Optical properties of SnO₂-As₂Se₃-ZnS(Mn, Cu)-Al structure with intermediate chalcogenide-glass layer

N.Mateleshko, V.Mitsa, S.Sikora

Department of Solid State Electronics, Uzhgorod State University, 32 Voloshin Str., 88000 Uzhgorod, Ukraine, e-mail: mitsa@univ.uzhgorod.ua

Received: 05.05.2003

Abstract

Introducing of As_2Se_3 as a contrasting intermediate layer into SnO_2 - As_2Se_3 -ZnS(Mn, Cu)-Al structure allows one to increase 1.5 times the light contrast range of the device that facilitates the perception of symbol-alphabetic information. The bleaching of As_2Se_3 film under the action of moisture allows to control the state of the structure air-tightness. The absorption edge of As-Se film and the electrooptical characteristics of SnO_2 -ZnS(Mn, Cu)-Al active structure are investigated.

Key words: Electroluminescence, ZnS powder, thin film, chalcogenide glasses

PACS: 78.40.-q, 78.60.Fi

Introduction

Electroluminescent direct-current flat panels (EDCFP) occupy an important place in developing modern means of representation [1]. One of the disadvantages of powder EDCFP is their relatively low light contrast range and a decrease of brightness with time [2-3]. Special contrasting substrates increase the contrast range, resulting simultaneously in considerable losses of SnO₂-ZnS(Mn,Cu)-Al structure radiation. The aim of this work is to investigate the possibilities for using As-Se high-ohmic chalcogenide glasses (GhG) as an intermediate contrasting layer in SnO₂-As₂Se₃-ZnS(Mn, Cu)-Al structure and for the visual inspection of airtightness of electroluminescent flat panels for the data representation.

Experimental Technique

The layer As₂Se₃ in the SnO₂-As₂Se₃-ZnS(MnCu)-Al structure was prepared by a vacuum flash evaporation at 773 and 873 K onto a glass substrate coated by conducting transparent SnO₂ layer, as a preliminary electrolumine-

scent layer of powder ZnS with the thickness of 5×10^4 nm was deposited by the method of stenciling [4,5]. The upper aluminum electrode was formed with the vacuum evaporation. Optical investigations of the absorption edge of As-Se films were carried out by a conventional method, with the measurements of both reflection and transmission. The electrooptical measurements were carried out in accordance with the generally accepted methods.

Results and discussions

The data for the absorption edge of the films of As_xSe_{100-x} system show that in the region of $\alpha>10$ cm⁻¹ (α is absorption coefficient) the dependence α versus the energy of photons may be described by a relationship $\alpha=(hv-E_o)^2$ (E_o being the pseudo-energy gap) typical for chalcogenide vitreous semiconductors.

The concentration changes E_o for the As-Se films prepared at different temperatures are given in Fig. 2. The absorption edge of the films below α <10³ cm⁻¹ is described by the relationship α -exp(hv/S), where S is the absorp-

Fig. 1. Absorption coefficient versus photon energy for the As₂Se₃ film prepared at 773 K.

tion edge slope [3]. As₂Se₃ has the sharpest edge that allows one to limit the background diffuse-mirror reflection from SnO₂-As₂Se₃-ZnS(Mn, Cu)-Al structure in the region of wavelengths λ <500 nm, due to a high diffuse reflection (ρ =0.88) of the powder ZnS. measurements of the diffuse-mirror reflection show that introduction of As₂Se₃ as an intermediate layer causes a decrease by 1.5 times in the reflection ρ , when compare with the powder ZnS (Mn, Cu). The calculations testify

that the decrease in the background reflection from the structure with As₂Se₃ layer results in the brightness contrast (K) half as much again, in comparison with the K value for the structure without a contrasting intermediate layer based on ChG.

Introducing the As_2Se_3 layer into the structure causes the decrease of brightness $\Delta B \le 10$ %. This is less than the decrease in the intensity of spectral contrasting substrate. The latter decreases two times the structure radiation [3].

Fig. 2. Concentration changes of the energy gap for a-As₂Se₃ films produced at different temperatures of evaporator (the corresponding temperatures are indicated near the curves).

Fig. 3 Volt-ampere (a) and volt-brightness (b) characteristics of the structures: $1 - SnO_2-ZnS(Mn)-AI$, $2 - SnO_2-As_2Se_3-ZnS(Mn)-AI$.

The measurement of voltage-current and voltage-brightness characteristics demonstrate (see Fig. 2) that the introduction of the dielectric As₂Se₃ layer into the structure does not change the appearance of the voltage-current characteristics ($I \sim U^n$, n=6-8) and shifts them

both towards the region of higher voltages only (Fig. 3).

Thus, the introduction of As_2Se_3 layer into the active SnO_2 structure increases 1.5 times its light contrast range and does not practically change the electrooptical characteristics.

Fig. 4 Change in the radiation intensity of the electroluminescent direct-current structure with moisture (%).

The "durability" of the data-representation electroluminescent flat devices is limited by a decay of electro-luminophore layer. The influence of moisture due to depressurization is considered to be one of the possible reasons decrease in the glow brightness [2,3].While depressurized placing the SnO₂-As₂Se₃-ZnS(Mn)-Al structure into the chamber with different moisture characteristics, the bleaching of As₂Se₃ film has been observed. The nature of photo-bleaching is associated with the electro-stimulated optical changes described in [6]. The dynamics of the brightness changes depending on the moisture is given in Fig. 4.

The data for the bleaching of As₂Se₃ film under the action of moisture allows one to inspect the state of air-tightness of the structure.

References

- Alexander P.W., Sherhod C., Stowell M.S. J. Phys. D. Appl. Phys. 121 1635 (1988).
- Vecht A. J. Vac. Sci. Technol. 10 789 (1973).
- 3. Sikora S.I., Svechnikov S.V., Mitsa V.M., Vashchuk F.H. Scientific Herald of Uzhgorod institute of informatic, economic and law. **2** 65 (1998) (in Ukrainian).
- Sikora S.I., Mitsa V.M., Nadoshi T.I. Radioel. Probl. Series. Gen. Probl. of Radioel. 21 34 (1991) (in Russian).
- Sikora S.I., Mitsa V.M., Nadoshi T.I. Radioel. Probl. Series. Gen. Probl. of Radioel. 19 32 (1991) (in Russian).
- 6. Tsiulyanu D.I., Chumakov I.S., Hrynshpun L.B. Phys. and Tech. of Semicond. **17** 21968 (1983) (in Russian).