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Abstract

This review article deals with the analysis of works dedicated to studies of absolute
piezooptic effect in crystals, which possess a symmetry lower than the cubic one. We
demonstrate a possibility to construct indicative piezooptic surfaces, basing on the
completed matrices of piezooptic coefficients. The examples for analysis of the piezooptic
effect anisotropy are given, which uses the indicative surfaces, as well as their sections and

stereographic projections.
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Introduction

During the last twenty years, the interest to the
piezooptic effect (POE) has not been weakening.
A major number of works has been concerned
with the birefringence induced by mechanical
stresses (see, e.g., [1-8]) or the retardation (e.g.,
[9-15]), including the studies performed in the
most recent years [16-20]. As a rule, the
majority of these works contain quite objective
results, since the polarization-optical method
[21,22], which has been used in these cases,
ensures a high measurement accuracy (~5%)
and a satisfactory reproducibility of the results,
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without employing researcher’s “ruses” and
“know-how”. This method has been in many
ways improved, too [23]. However, we would
like to call in question the results of those
works, where the authors declare studying the
changes in the birefringence induced by uniaxial
pressure for the crystals with a large natural
birefringence, and, at the same time, they do not
take into account the elastic deformation of
samples (this problem is perfectly elucidated in
[24], chapter 5).

Let us notice that, in particular cases, the
birefringence induced by mechanical stresses
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allows one to calculate the absolute piezooptic
coefficients (POCs), which describe the changes
in the refraction index or the rotation of optical
indicatrix. This concerns to the coefficient
[22-24] of cubic crystals, the
coefficient g [21,24-29] of tetragonal crystals,

TT44=T55=Tl66

which belong to the symmetry classes 422,
4mm, 4/mmm, and 42m, and also all of 12
absolute POCs in rhombic crystals. The POC
matrix of the rhombic crystals does not contain
the rotational (or turning), the shift and the off-
diagonal turning-shift POCs (the definitions of
the turning, shift and the off-diagonal turning-
shift POCs have been given in the first part of
the present paper). In order to determine 9
principal POCs 7, (i, m = 1, 2, 3), one should
therefore realize 9 independent experimental
geometries, which would be described by 9
equations of the type of

5Ank = —%(ﬂimng —ﬁjmn;)am,

three of which refer to 45°-directions of the
polarization and the light propagation. Here Any
denotes the birefringence, mn and 7, the
absolute POCs, o, the mechanical stress, index
k marks the light propagation direction, 7 and j
the polarization directions within the plane
perpendicular to the k direction, and m the
direction of the uniaxial pressure. This subject
has been in detail considered in [22,30-32]. The
three other POCs 744, 7155 and 76 are described
by the equations for birefringence, which
contain, besides of the POCs themselves, some
complicated combinations of the principal 7y,
[22,30]. As a result, those POCs cannot be
determined with a high accuracy.

The most commonly used method for
studying the absolute POCs is still
interferometry (see [22] for the past and [33,34]
for the present-day techniques). Eventually, the
same also refers to the absolute electrooptic
coefficients [35]. But the absence, until the
recent times, of the complete description of POE
with respect to the elasticity effect has hindered
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the applicability of this method. The remarks
about the applications of interferometers to the
studies of POE, including those of a principle,
will be formulated in detail at the beginning of
chapter 6 of the present article.

A rich bibliography of the works on
piezooptics in crystals until 1983 is contained,
e.g., in [22,36-38].

6. Analysis of results for the absolute
piezooptic coefficients

In the first part of the present article [24], the
methodology of determination of the absolute
POC has been led to the working formulae.
These formulae give a possibility to complete
the POC matrices for the crystals of all
symmetry classes. Some examples of all the
determined independent POCs for the crystals of
different symmetry classes are brought together
in Table 1. As one can see, a number of studies,
where the problem of completing the POC
matrix is in full solved, reduces with lowering
the symmetry class of crystal, i.e. with a
complication of the POC matrix. In many cases
of piezooptic studies, the authors do not
accentuate at all whether they take the elastic
deformation of sample into account when
determining the POC, or not. There is therefore
a ground to object the facts reported there. There
are also the works where the formulae for 7z,
are used, in which the multiplier #; is present in
the elastic term, instead of #;— 1. This represents
another source of flagrant error in the
calculations of 7. The deficiency is typical, for
example, for the monograph [22] and it is
apparently carried from the book [39] of the
ancestor of modern piezooptics F.Pockels, to
whom the author [22] refers in many cases.
Probably, it has a sense to cite some curious
examples of the studies of 7. So, the work [40]
reports the results for the absolute 7, in taurine
crystal, which belongs to the monoclinic system,
giving the values of all 20 independent POCs.
However, the article does not contain the
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Table 1. Absolute POCs of some crystals (in Br=10"2 m*/N).

Non-zero
independent T 72 3 31 733 T4 41 a4 TTss 766
POCs
Crystal
(symmetry class)
Alum
KAI(SO4),-12H,0 1.8 8.3 5.7 712 7 - - -0.1 T4 T4
+0,6%Cr (m3) [51]
Barium-strontium
niobate (Ba,Sr;_4) -2.5 -2.9 -2.0 -3.8 4.7 - - -3.6 o 3.6
xNb,Og, x=0.4
(4mm) [52]
LiNbO; (3m) [44] -0.47 | 0.11 2.0 0.47 1.6 | 0.7 | -19 0.21 N T—T12
LiTaO; (3m) [53] -0.62 | 0.34 0.64 0.43 — 1040 0.07 0.41 Tas TI—7T12
0.07
Barium beta-borate
B-BaB,0, (3m) [43] -1.7 | -1.35 1.75 -1.6 37 | 20| 2.0 26 s To—TT1
Roshelle salt 3.1 34 3.2 5.0 1.6 - - 2.5 1.5 -2.5
(222) [30] o= o= 3= T30=
=0.76 | =54 =2.1 =2.9
Cs,HgCl; (mmm) 2.3 17.5 14,8 -1.7 | 13.2 - - -11 -5.8 -10.4
[48,49] o= | ;= T03= T30~
=11.8 |[=—-14 | =16.6 | =7.3

working formulae, which should have been
complicated enough [24], owing to a presence in
the POC matrices of eleven non-principal
independent POCs, but instead there is a
qualitative reference to the Pockels’ method
only. As a consequence, there appears a
confidence, rather than simply a doubt, that the
results of this work are not true. We notice also
that, until the appearance of the works
[24,41,42] (all performed with the participation
of the author of this review), one could not find
in the literature any references, containing the
working formulae for determination of the non-
principal POCs for the crystals with a symmetry
lower than the cubic one. Only the work [22]
gives the correct formulae for 74, 774; and 74 for
the most simple, with respect to the symmetry,
cases of trigonal crystals (the symmetry classes
of 3m, 3m and 32), though without any
indication at the sign dualism of these POCs and
the necessity to fix the signs of axes of the right-
hand coordinate system [24,44-46], and again
with the above-mentioned error in the elastic
term (the multiplier #; instead of (n;— 1)).
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We should also point at the work [37],
where the working relations are given for the
cubic and simpler-symmetry trigonal crystals,
but without the sign dualism for the coefficients
s, 71 and 7y, and without the elastic term. The
deficiencies of the POE
above may probably explain the essential lack of

studies mentioned

agreement between the values of the 7y,
coefficients for LiNbO; crystals determined in
[45] and [47].

Thus, having taken the above reservations
into account, it is necessary to call in question
the results of the most of works, in which all the
absolute POCs 7, are determined. Therefore,
Table 1 includes the 7, values for the crystals
studied with participation of the author of this
review, as well as the results [48,49], which are
familiar for the author, and those of [30], where
the correct working relations are written out and
the careful experiments performed. This means
that the values of 7, are obtained in [30] with a
number of methods: (1) the retardations induced
with the uniaxial pressure are measured, using
the polarization-optical method (a rhombic
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symmetry of the Roshelle salt crystals under
study allows to calculate all of the absolute
coefficients 7, after these data — see Table 5.2
in [22]), (2) some values of =, are found
directly with the interferometric method, and (3)
the relations for some elastooptic coefficients
(like for the p,1/p11 and pi3/ps3 ratios) are found
with the acoustooptic diffraction method, which
are subsequently compared with the coefficients
pim calculated on the basis of 7z, All the results
are well coordinated (within the limit of 10%),
thus giving a ground to consider them as being
unbiassed. By the way, they agree in the main
with the results of the latest works [31,50], too.

On the basis of the completed POC
matrices (Table 1), below we give the examples
of construction of POE indicative surfaces (or
the so-called piezooptic surfaces), their sections
by the principal planes and also stereographic
projections of these surfaces, which demonstrate
in the most complete manner both the value and
the anisotropy of POE in crystals.

7. Indicative surfaces of piezooptic effect
for trigonal and cubic crystals

The indicative surface (IS) is a spatial surface
described with radius-vector of a physical effect
[54-56]. The value of the radius-vector (R)
along the given direction is equal to the value of
the physical effect in the same direction. The
direction R is defined in space by the direction
cosines of the angles between R and the axes
X;, X, and X5 of crystal-physical coordinate
system, or by the spherical coordinates & and ¢.
After citing the definitions, we emphasize
that the IS mathematically corresponds to the
transformation law for the components of tensor
of the given physical effect, under transiting
from the “old” (crystal-physical) coordinate

system X, Xp, X5 to the “new” (or “mobile™)
one X'y, X5, X'3. So, the IS for the piezooptic
effect, which is described by a rank-four tensor
TTm, lOOKS as

ﬁ(a

= ami : anj ' apk ' aglﬂ.ijkl

— ! _
mi’anj’apk’agl):ﬂ- mnpg (1)

B

1
where ',

is the indicative surface, m;,the
components of piezooptic tensor in the old

(crystallographic) coordinate  system, and

Oy Oy the  direction cosines between the

axes of the new and the old coordinate systems.

Trigonal crystals

Let us write down formula (1) in the detailed
form for the case of niobate crystals belonging
to the trigonal symmetry class 3m, and take into
account the corresponding POC  matrix
containing only eight independent POCs 7, (see
Table 1). This will take into account the known
dependences of POCs written in the matrix (7;,)

and tensor (7, ) forms (7, = 7,, atm=123

and 7, =2 Ty atm= 4,5,6).

For the longitudinal component of the POE
tensor 7', referred to as the “longitudinal POE”
later on (this component describes a change in
the birefringence along the axis X'; under the
action of uniaxial pressure in the same direction)
we get:

T, = ”11(05121 +7hy = 7[11(0(121 +0(122)2 +
(7, + 2704, )3ty — o), + ()

4 2 24 .2
A0 + (705 + 705y + 27,) X (0, + a4,y

For the transverse component 7', of the
POE tensor referred to as the “transverse POE”
(it describes a change in the birefringence along
the axis X' under the action of uniaxial pressure
along the axis X',) we have:

[ 2 2 2 2 2N\2 .2 2 2
T 12 _ﬂ-ll(allaZI +a12a22) +7Z'12 (a11a22 _a12a21) a23 +7[13(a11 +a12) a23 +7[33a13a23 +

2 2N\2 2 2 2 2 2
+ﬂ31(a21 + a22) alS + ﬂ14 (allaZZ _a12a22 + 26¥11a226121 )a23 + 272-41((112a22 _a12a22 + (3)

20,0, 00, )0 5 + 2704, (@), + Q0 )O3y
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To construct the indicative surfaces (2) and
(3), we should pass on to the spherical
coordinate system, and then express the
direction cosines in terms of the spherical
coordinates dand ¢.

In case of the longitudinal POE it is enough
to set the direction of the axis X', along which
the pressure acts and the light is polarized. That
is why the radius-vector R || X, is determined
by the three direction cosines a,;,a,and o5,
for which the known relations give

a,, =sinfcos @;

a,, =sin@sin @; 4)

a,; =coso.

Inserting (4) into (2), we arrive at the IS for
the longitudinal POFE:

x', =, sin* @+ 7, cos* 0+
1 .
+Z(72'13 + 7y, + 27, )(sin 20)° + (5)

+(7,, +27,,)sin’ @ cosOsin 3p.

To obtain the sections of the surface (5)
with the principal planes, it is necessary to insert
into (5) the values of @ and ¢, which correspond
to these planes, i.e., the sections by planes X,
13X, 1 LX5 are determined by trivial conditions
¢=0°, @=90° and 6=90°, respectively. Inserting
these angles into (5), we obtain the following
expressions for the principal sections of the IS:

' (LX) =n,sin* @+, cos* O+

1 (6)
"‘Z(”n + 703, + 274,),
7' (LX,)=x, sin*0+7x,cos* 0+

1 .
+Z(7r13 + 71y, + 27, )(sin 20) + (7)

+(7r,, +27,,)sin’ O cos 0,
'y (LX5) =7, (thisisacircle) (8)
For the longitudinal POE described by
equation (3) we are to point out the following
typical differences: firstly, it is necessary to set
the two directions (those of the light polarization
(§) and the uniaxial pressure (m)) rather than
one, and, secondly, the IS of the diametrical
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POE should be constructed depending on
whether (1) the radius-vector R coincides with
the polarization direction, or (2) R coincides
with the pressure direction.

In the first case of the piezooptic surface
construction, the pressure direction m || X', can
change in the isotropic plane X;X, perpendicular
to the optical axis, and the polarization direction
i || R X', for each “fixed” direction of m
changes in the plane perpendicular to m, i.e., in
the plane X', X'5. Let us note that the conditions 7
|| X'y and m I X', are chosen far not accidentally
determination of

— they correspond to

component 7', of the POE tensor in the

coordinate system X'y, X'»,X's.

Now it is easy to obtain the values of the
direction cosines for the each case in terms of
spherical coordinates 6 and ¢ for the directions
of polarization ¢ I R and pressure m LR , (see
Fig. 1, where the direction of pressure (m) or

ma |2
¢ Rpr
90%¢

¢
0 X,

Fig. 1. Schematic representation of the directions
of uniaxial pressure m (or light polarization f) and

the radius-vector ﬁp, projection within the
isotropic plane X;0X; in optically uniaxial crystals.

light polarization () is taken within the isotropic

plane X;X; and R is the projection of the
radius-vector onto this plane):
a,, =sinfcos@; a,, =sinfsiny;

a,; =cos0,; a,, =—sing; 9)
a,, =COSQ; a,, =0.
In the second case of the surface

construction for the transverse component 7'y, of
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the POE tensor, the polarization direction il X
changes within the plane X;X,, and the pressure
direction m || R || X', for each “fixed” direction
of polarization 7 (within the plane perpendicular
to 7). Then we obtain for the directions m | R

and 7/ LR ,, (Fig. 1):

o, =-sing, a,=cose, a;=0,

a, =sinfcosp, a, =sinfsing, (10)

a,; =cos6.

Inserting (9) and (10) into (3), one has the
relations

i) _ c 2 2
'y =m,sin” @+, cos” 0 —

(11

—7,,5in20sin 3¢,

W(m) __ s 2 2
7'y =m,sin” 0+, cos” 60—

(12)
—%ﬂm sin 20sin 3¢,

which describe the IS of the diametrical POE in
spherical coordinates.

We call the surface (11) as the piezooptic IS
of the polarization, because it is described in
space by the radius-vector R coinciding with
the light polarization direction, while the surface
(12) as the piezooptic IS of the mechanical
stress, because it is described by the radius-
vector R coinciding with the pressure direction.

Inserting the values of #and ¢ into (11) and
(12), which correspond to the sections of these
surfaces by the principal planes, we obtain,
analogously to (6)-(8), the following equations
for the principal sections:

1) for the surface of '}

V(L X,)=7m,sin* @+, cos’0,  (13)

7"(L X,)=7,sin* @+, cos’ O+

+7,,5in 20,

(14)

V(LX) =7,

(15)
(this is the circle);

2) for the surface of w'{;"

""(LX,))=rn,sin’@+rx,cos’ 6, (16)
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7" (L X,)=r,sin’ @+ 7, cos’ O +
+%7zl4 sin 26, (17
z""(L X,)=r, (thisis acircle).  (18)
One can see that all the formulae (5), (11)-
(12) for the IS of the longitudinal and transverse
POE, along with formulae (6)-(8) and (13)-(18)
for the sections of these ISs by the principal
planes, are simple enough. That is why, a stan-
dard computer software would allow one to
build, without any difficulties, all the correspon-
ding ISs and their sections, to find the extremum
(maximum and minimum) or some given values
and their angular coordinates (0, @), to construct
their stereographical projections, which provide
complete quantitative characteristics of the POE
anisotropy (see below). The examples of the ISs,
their sections by the principal planes and stereo-
graphic projections of the ISs for the crystals of
LiNDbO; are demonstrated in Fig. 2. The analysis
of these surfaces will be conducted at the end of
the chapter. Here we restrict ourselves to the
following worthwhile remarks only:
(1) The construction of the piezooptic IS
n'1, is limited by the modes described above,
when the “fixed” direction m (or #), around
which the radius-vector R rotates, can change
within  the
perpendicularly to the optical axis. The reason is

principal plane only, i.e.,
that, for the light propagating in the anisotropic
direction k in crystal, there are two possible
(mutually perpendicular) polarization directions
only, which lie in the plane perpendicular to the
direction £, i.e., one of the polarizations is still
placed in the isotropic plane. Therefore, only the
above-described ways for the POE IS
construction may ensure a  reciprocal
perpendicularity of the three directions #, m and
k, the only condition being consistent with the
allowable geometries of piezooptic experiments.
If the “fixed” direction m (or /) changed in any
other non-isotropic plane, then the analysis of
the construction procedure would demonstrate

that it is impossible to satisfy the condition
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ilmlk. In this respect, the POE is qualitatively fourth-rank tensors (for instance, the elasticity or
different from the other effects described by the piezo-resistance effect), for which all the ex-

(b) ' {)

Fig. 2. Indicative surfaces of POE in LiNbO; crystals: a) the longitudinal POE (r'44), the transverse

POE (n' {12)) and the transverse POE (n,grzn) ). (1), (2) and (3) represent, respectively, the appearance
of the IS, its stereographic projection and section by the principal planes.
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perimental geometries are allowable (and, cor-
respondingly, all the ways of the IS construction
are allowable, when it is not obligatory to limit
oneself to the isotropic plane for the possible di-
rections of one of the axes X';). Therefore, these
effects, which are characterized with the two
qualitatively different IS 7';, only, allow, in
principle, to construct an unlimited number of
ISs for the transverse components of the corres-
ponding tensor, contrary to the POE. This impli-
es that an unambiguous comparative analysis of
such the physical effects is quite difficult. As for
the IS of the piezooptic effect, a limited number
of the ISs confirms unambiguity and an un-
biased character of both the relevant studies and
implementation of the corresponding results.

(2) One can demonstrate that the surfaces
Tn=nyp=ny and 7' p=a'0=2'32=7 3= 3=1"3,
and therefore the equations (5), (11) and (12),
describe completely the longitudinal (¢ || m) and
transverse (/Lm) POEs (for 7 m <3) in the
crystals of symmetry 3m (the same refers to the
symmetry classes 3m and 32, which have the
same POK matrices).

(3) It is necessary to construct the IS in the
same coordinate system, where the POC x;, are
measured (with taking the positive directions of
the axes X;, X5, X; into account), in order to
eliminate the errors related to ambiguity of the
choice of coordinate system [24,44- 46].

(4) We emphasize that the surfaces 'y,

fr'fiz) and :r’g‘)

correspond to the principal
1,2,3)

and describe the changes in the refraction index

components of the POC matrix (£, m =

along the direction denoted by the first
subscript, under the action of a uniaxial pressure
(tension) applied along the direction denoted
with the second subscript. We do not consider
the surfaces 7';, with the indices 7 m >3,
because they have a rather educational character,
though are of a little practical use in the light
modulation, photoelastic

pressure  Sensors,

acoustic-optical devices, etc.
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Cubic crystals

Since the POC matrices for cubic crystals are
simpler in comparison with trigonal crystals (see
Table 1), the equations for these ISs are simpler,
too. The methodology for derivation of the IS
equations is already considered above. That is
why, here we confine ourselves to writing down
the IS equations of the type of (5), (11) and (12)
for cubic crystals, which may be divided into the
two groups, according to their POC matrices: (1)
the crystals of lower symmetry, belonging to the
classes 23 and m3 (four independent POCs T,
2, m3 and 7my4), and (2) the crystals of higher
symmetry described by the classes 432,43m
and m3m (three independent POC 7, 7, and
7Z44)-

The formulae for the IS in case of the
first-group crystals are as follows:

7y =7+ (T + 7y 4 27, = 27,,) X

x(sin® @sin® @ cos® @ + cos’ @)sin’ O, (19
)= %(ﬁ11 - ,,)sin’ O(sin2¢)” +
+77,,(sin” @ cos® @ + cos” Osin® @) + (20)
+77,5(sin” @sin* @ + cos® O cos’ ),

"\ = %(ﬁn - ,,)sin’ O(sin2¢)” +
+77,,(cos” @ cos” @ +sin® Osin* @) + (21)

+77,5(cos’ @sin’ ¢ + cos® O cos* ).

The analysis testifies that the #'3) IS

remains analogous to that for 7'{3 , but is rotated

around the Xj axis by 90°. This is why, Fig. 3
shows only an outward appearance of one of
these ISs.

For the second group of cubic crystals we
have the POCs 7,=75 and so the IS formulae
are simpler:

Ty =70+ 2Ty + Ty — 71,,) X

22
x(sin” @sin® p cos’ ¢ + cos” @) sin* 0, @

Ukr. J. Phys. Opt. V4. Nu3
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1(i) 1(m)

1
Ty =Ty =7, +§(7T11 — Ty~ Tgy) %

(23)
xsin® @(sin’ 2¢).

For optically isotropic media, one more
condition is to be required: 1y = 7y - M. As a
result, the analysis of (22) and (23) yields in the
following quite simple expressions for the IS:

=y 1 ox = =nx, (24)
for all the values of 0 and ¢, i.e. formulae (24)
describe spheres with the radii 7, and 7, res-
pectively, for the longitudinal and transverse
POE.

8. Analysis of anisotropy of the piezooptic
effect
We characterize the POE on the basis of both
the equations and outward appearances of the
indicative surfaces and their sections. Besides, it
is easy to use stereographic projections of the IS
for the quantitative analysis of the POE
anisotropy. We demonstrate the essence of
construction of those projections on the example
of 7/y; as a function of spherical coordinates
(see, e.g., formula (5)). At first, we should find a
set of values of the arguments 6, ¢ of function
(5), which determine the directions, along which
the function 7'y1(6 @) has the same chosen
Then,
construction of stereographic projection of

values. according to the rules for
directions, we determine, for each i-direction
defined by &, ¢, the coordinates x,; x,; of their
stereographic projection onto the diametral
plane of projection X;0X,:
x,; = tan(6, /2)cc')sgol., . 25)
X,; =tan(@, /2)sin g,

A set of points at the plane X,0X,
constructed along this way describes one isoline
for the chosen value of the function 7'1,(0,9).
Quite similarly, one can construct the other
isolines for the chosen set of values of the IS
7'11(6, ¢). The construction of stereographic
projections of the IS may be realized easy
standard

enough, when wusing a modern
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software. The examples of stereographic
projections of the IS are given in Fig. 2 and 3
(see also [57-59)).

Now we summarize a brief analysis of the
POE anisotropy:
of the IS
construction for the longitudinal and transverse
POE brought together in Fig.2 to 4, a

conspicuous anisotropy is typical, including a

1. For all the examples

possibility for inversion of sign of the effect.

2. One can see from these figures that the
ISs do not represent surfaces of rotation around
the symmetry axes. This fact corresponds to the
Hermann theorem [60]. According to it, the
surfaces of rotation around the symmetry axis
are the ISs of only those physical effects, whose
tensors have a rank lower than the order of the
mentioned symmetry axis. Hence, only in case
of hexagonal crystals one can expect a simple
form of the IS, i.e., a surface of rotation around
the axis X3 corresponding to the six-fold
symmetry axis.

3. The ISs and their
projections reveal all the symmetry elements

stereographic

characteristic of the crystal. Moreover,
sometimes the ISs and the projections exhibit
symmetry elements, which are not included in
the point group of crystal. For example, we find
a two-fold symmetry axis characteristic of the
stereographic projections for LiNbO; crystals,
which does not belong to the point group 3m.
Similarly, in case of the longitudinal POE (the
surface of 7/y;) in the aluminium-potassium
alum crystal we detect the four-fold axis
directed along the second-order symmetry axis
peculiar for the crystal itself.

4. It looks quite unexpected a fact that, for
all the cubic crystals, the extremum values of the
longitudinal POE (the surface of #'y;) are
observed along the same directions, independent
of the relative values and signs of the POCs.
This conclusion may be readily arrived at after

inspecting the partial derivatives Ox',,/06 and
or',/0p (see formulae (19) and (22)). For
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instance, one of the extrema at the 7'y, surface
may be observed at 0 = arctan~/2 =57,7" and
@ =45 +nx90° (n=0,1,2,3). Hence, we conclu-
de that the 7', surface shapes are alike for all
cubic crystals. On the other hand, different signs
and relative values of the POCs stipulate a

variety of shapes of the POE surfaces, including
a sign inversion for the extrema.

5. For the transverse POE (the 7/, surfaces)
in cubic crystals, the orientation of extrema is
different for the two groups of symmetry clas-
ses: 432, 43m, m3m and 23, m3, respectively.
While analyzing formula (23) in terms of partial
derivatives for the first group, we find that the

@) 7'

6=90",
and ¢@=0"or

have the orientation
(n=0,1,2,3)

@ =90" for the all values of 0 (this corresponds

extrema

=45 +nx90°

to circular sections of 7';, surfaces by the planes
1%, and 1X,; then we have 7', = 7m). We did
not succeed in determining the angular
orientation of all the extrema for the second
group (the classes 23, m3) with the aid of partial
derivatives, since the expression (20) for 7'y, is
too complicated for this analysis. However,
some extrema may be nevertheless found: e.g.,
the extrema of one of the groups are placed
along the crystallographic axes X;, X,, X3, and

the second group is described by the coordinates

| 3

e = 2

(+)

(b) 7'}, = 77’12"'900

around X

Fig. 3. Indicative surfaces of POE in KAI(SO4),-H,0+0,6%Cr; crystals. The notations are

the same as in Fig. 2.
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0 =90" and @ =152" + nx180" (n=0; 1).

6. There is an interesting peculiarity of the
7’1, surface for the crystals with symmetries 23
and m3 (see Fig. 3). Here the IS crosses the axis
X5 not at a single point, but at a larger number
of points lying at this axis within the interval
from m, to m3. The explanation of this
peculiarity has been made in [58].

7. For the trigonal crystals belonging to
symmetry class 3m (e.g., LiNbO; [57] or
LiTaO; [59]) one can also find coordinates of
some extremum values of the IS with the same
method of partial derivatives, applied to 7'j as a
function of 0 and ¢. For example, the surface

7'\) for LiNbO; has three (the same in values)
extrema along the directions ¢ =30"+nx120"
(n=0,1,2), 6=0,5arctan[27,, (7, — ;)] =42".
In other words, the coordinates of extrema for
the symmetry class 3m depend on the POC va-
lue, in contrast to the cubic crystals. Therefore,
we expect here a larger variety of the IS shapes.
As an example, a complete enough analysis for
the IS differences in the crystals of lithium
niobate and tantalate has been made in [59].

8. The coordinates of extrema can be also
determined with a high accuracy from the
stereographic projections of the ISs by means of
stereographic reticle by Yu.V.Vulf. From the
other side, having known the coordinates of the
extremum (0, @), one can insert their values into
relations for the surfaces 7'y, and 71, (see
formulae (5), (11), (12), etc.), and so find the
extremum values of the POE. For example, the

D
)
o

2o

‘\
S

3y
N
N

o

N

A

1LY
ke

maximum values of the POE for LiNbO; are

equal to 7/, = 1,9 Br, 7'} =

2.1 Br, whereas for
the aluminium-potassium alum they are notably
larger (7', = 5,3 Br, 7/1,= 8.3 Br, etc.).

9. The IS may be also constructed with
accounting for the elasticity effect. This problem
is considered in [60].

More details about the essence and
appearance of indicative surfaces for different
physical effects may be found in [54-56,61-63],
and for the POE in particular — in [45, 57-60].

Conclusion

In the present review we derive the equations
and give the examples for the construction of
piezooptic indicative surfaces for the cubic
crystals and the trigonal crystals with simpler
piezooptic matrices (the classes of 32, 3m and
3m). Besides, the formulae (5), (11) and (12)
enable one to write out the equations for the
piezooptic surfaces of hexagonal crystals with a
relatively high symmetry (622, 6mm, 6/mmm
and 62m), after taking into account that w4 =
== 0 for the mentioned crystals. The problem
of construction of the IS is also solved for the
tetragonal crystals belonging to the symmetry
classes of 422, 4mm, 4/mmm and 42m. The
corresponding equations and the examples of the
outward appearance of the IS are given in [64].

What concerns trigonal, tetragonal and
hexagonal crystals with a lower symmetry
(respectively, the classes 3 and 3, 4, 4 and 4/m,
and 6, 6 and 6/m), we did not considered the

Fig. 4. Indicative surfaces of longitudinal POE in the rhombic crystals: a) Roshelle

salt, and b) Cs,HgCl, crystals.
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subject, because the POC matrices have not
been still completed for any crystal of the
mentioned symmetry classes.

A separate remark should be made for
optically biaxial crystals (i.e., rhombic,
monoclinic and triclinic classes). The analysis of
the ISs for those crystals demonstrates that their
unambiguous construction is possible only for
the longitudinal effect (the surface of m'y;). The
example for such the construction for the
Roshelle Salt and the crystals of Cs,HgCl, may
be seen in Fig. 4. When the directions of light
propagation (k), polarization (i) and pressure (1)
are required to be mutually perpendicular, the IS
construction for the longitudinal piezooptic
effect (the surfaces of n'y,) is problematic. If we
even dropped the above condition of mutual
perpendicularity, the IS construction would be
anyway ambiguous, thus allowing no unbiassed
analysis of the value and anisotropy of the POE.

The author thanks to Prof. R.(0.Vlokh and
Dr.  N.M.Demyanyshyn  for  suggested

observations and valuable discussions.
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