Luminescent-kinetic parameters of CsPbCl₃ nanocrystals dispersed in wide-band perovskite-like matrices

S. Myagkota

Lviv S. Z. Gzhytsky State Academy of Veterinary Medicine, 50 Pekarska- Str., 79010 Lviv, Ukraine, E-mail: vetacademy@hotmail.com, http://vetacad.lviv.ua

Received 29.05.2003

Abstract

CsPbCl₃ nanocrystals are obtained in perovskite-like CsBCl₃ (B=Sr, Ca, Mg) matrices doped with Pb ions (C_{Pb} =0.05 and 1 mol.%). The luminescent-kinetic parameters of the CsPbCl₃ nanocrystals dispersed in CsBCl₃ (B=Sr, Ca, Mg) matrices are studied under the pulsed UV and X-ray excitation. The conclusion about the formation of CsPbCl₃ nanocrystals is confirmed with the data of their luminescence decay kinetics and a short-wavelength shift of the exciton luminescence maximum, when compared to that of an excitonic luminescence in a bulk single CsPbCl₃ crystal. Under the pulsed X-ray excitation, re-absorption of core-valence luminescence of CsBCl₃ (B=Sr, Ca, Mg) matrices with the CsPbCl₃ nanocrystals is registered.

Keywords: nanocrystal, quantum size effect, luminescent-kinetic parameters, corevalence luminescence.

PACS: 82.70.Dd

1. Introduction

Investigation of luminescent-kinetic parameters of semiconducting CsPbCl₃-type nanocrystals (quantum dots) thermally created in CsCl-Pb, CsSrCl₃-Pb and RbPbCl₃-Cs single crystals is one of the promising ways to search for the materials attractive for fast scintillators [1-3].

CsPbCl₃ nanocrystals are characterized by an intense luminescence of free excitons with short decay times (tens of picoseconds) [4], which are one of the necessary conditions for their use as fast detectors of high-energy radiation.

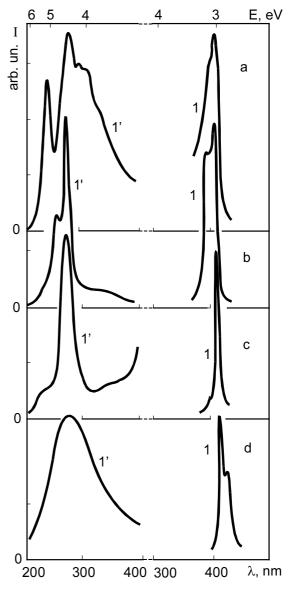
Our investigations of luminescent-kinetic parameters, performed under the high-energy excitation, have shown that the semiconducting CsPbCl₃ nanocrystals, embedded in insulator matrices, are mainly excited due to the reabsorption of single lead centre luminescence

and the intrinsic matrix emission, with the slow component $(10^{-6} \sim 10^{-3} \text{ s})$ dominating in the decay kinetics.

This gives rise to the slow component in the luminescence decay kinetics of CsPbCl₃ nanocrystals, undesirable for fast scintillators. Certain prospects open if the wide-band perovskite-like CsBCl₃ (B=Sr, Ca, Mg) matrices a core-valence used. exhibiting luminescence (CVL) under the high-energy excitation (E≥14 eV). Since the CVL is characterized by a short decay $\tau \approx (1.5\pm0.1)$ ns [5, 6], one can expect that due to re-absorption of the matrix CVL by the CsPbCl₃ nanocrystals, a luminescence can be excited in these nanocrystals with the main decay time $\tau \approx (1.5\pm0.1)$ ns, satisfying the conditions for the time characteristics of fast scintillators. In order to verify this assumption, we study in the present paper the luminescence kinetic parameters of the CsBCl₃-Pb (B=Sr, Ca, Mg) crystals subjected to prolonged high-temperature annealing under the pulsed UV and X-ray excitation.

2. Experiment

The CsBCl₃-Pb (B=Sr, Ca, Mg) crystals were grown by the Stockbarger method in the two stages. At first the CsBCl₃ (B=Sr, Ca, Mg) crystal matrix, and then the CsBCl₃-Pb (B=Sr, Ca, Mg) crystal were grown. Concentration of the lead ions in the melt was 0.05 mole % (CsCaCl₃-Pb) or 1 mole % (CsSrCl₃-Pb, CsMgCl₃-Pb). The PbCl₂ material was repeatedly purified with a zone smelting technique (≈30 zones).


In order to form the CsPbCl₃ nanocrystals dispersed in the CsBCl₃ (B=Sr, Ca, Mg) matrix, the CsBCl₃-Pb (B=Sr, Ca, Mg) crystals were subjected to a prolonged (100 h) high-temperature (T=200°C) annealing.

Luminescence kinetic characteristics of the crystals were measured under the pulsed UV and X-ray excitation. Duration of the exciting pulse τ was 1.0 and 1.5 ns, respectively, with the repetition frequency f=100 kHz. The luminescence spectra were recorded in the single photon counting regime, with the aid of set-up mounted on the basis of the MDR-2 monochromator. The actual luminescence decay times were determined with taking into account the exciting pulse shape and using the deconvolution procedure. According to [7], the iteration method used for the evaluation of oneexponent parameters of the decay time curve gives a satisfactory accuracy of approximation. Our experimental set-up permitted us to determine the time decay constants $\tau \ge 0.5$ ns.

The luminescence and luminescence excitation spectra under stationary excitation were measured with a deuterium lamp. The required range of the exciting light was allocated by DMR-4 monochromator. All the measurements were carried out at T=77 K.

3. Experimental results and discussion

The luminescence and the luminescence emission spectra of the CsBCl₃-Pb (B=Sr, Ca, Mg) crystals at a stationary excitation are given in Fig.1. Let us analyze the presented luminescence spectra. The relatively narrow band with the half-width Δ H=0.04 eV and the maximums at λ_{max} =414, 416 and 412 nm (Fig.1 a, b, c; curves 1) in the CsSrCl₃-Pb, CsCaCl₃-Pb, CsMgCl₃-Pb crystals is similar to the free-

Fig.1. Luminescence spectra (curve 1) and excitation spectra (curve 1^{\prime}) of CsSrCl₃-Pb (a), CsCaCl₃-Pb (b), CsMgCl₃-Pb (c) crystals and CsPbCl₃ single crystal (d). T=77 K, λ_{ex} =300 nm .

exciton emission band of the CsPbCl₃ single crystal (λ_{max} =418 nm, Δ H=0.025 eV) (Fig.1 d, curves 1), the spectral position of which does not depend on the wavelength of the exciting light. Such a similarity of the spectral characteristics indicates that, during the high-temperature annealing in the CsSrCl₃-Pb, CsCaCl₃-Pb and CsMgCl₃-Pb crystals, the lead-containing aggregates of the CsPbCl₃ type dispersed in this matrix are formed.

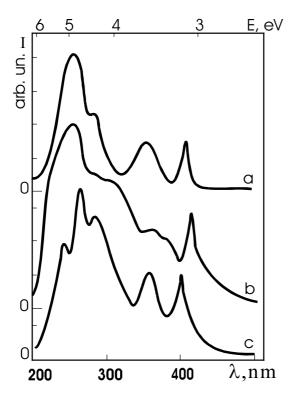
Such a similarity of spectral characteristics of the mentioned luminescence bands indicates also that, during the high-temperature annealing in the CsSrCl₃-Pb, CsCaCl₃-Pb and CsMgCl₃-Pb crystals, the single lead centres are aggregating as nanocrystals of the CsPbCl₃ type embedded in the corresponding wide-band perovskite-like matrix.

An increase of the luminescence band half-width of CsPbCl₃ aggregates dispersed in the CsBCl₃ (B=Sr, Ca, Mg) matrices, when compared to that of the CsPbCl₃ single crystals, can be explained by a formation of CsPbCl₃ nanocrystals of different sizes, embedded in the CsBCl₃ (B=Sr, Ca, Mg) matrices.

The short-wave shift of the emission band maximum of CsPbCl₃ nanocrystals in the CsBCl₃ (B=Sr, Ca, Mg) matrices with respect to the position of the maximum of free exciton emission band in CsPbCl₃ single crystal by Δ E=60, 84 and 45 meV, respectively, can be interpreted as a manifestation of quantum size effect. Using the relation between the magnitude of the short-wave shift and the average radius R_{QD} of the nanocrystal [8]

$$\Delta E = \frac{\hbar^2 \pi^2}{2\mu R_{OD}^2},\tag{1}$$

where μ =0.65 m_0 [9, 10] is the reduced mass of exciton for the CsPbCl₃ single crystal (m_0 denoting the mass of a free electron), we determine the average radius of the CsPbCl₃ type nanocrystals dispersed in the CsBCl₃ (B=Sr, Ca, Mg) matrices ($R_{QD}\approx$ 2.8, 3.8 and 4.0 nm in the CsSrCl₃, CsCaCl₃ and CsMgCl₃,


respectively).

The conclusion about the formation of CsPbCl₃ nanocrystals is confirmed by the data of their luminescence decay kinetics. The luminescence decay time for the CsPbCl₃ nanocrystals dispersed in CsBCl₃-Pb (B=Sr, Ca, Mg) crystals under the excitation in the matrix transparency region for CsSrCl₃, CsCaCl₃ and CsMgCl₃ ($\lambda_{ex} \ge 300$ nm) is described by the exponent with the decay time of τ =0.5 ns. The same exponent describes the luminescence decay kinetics curves for CsPbCl₃ single crystal excited in the same spectral region. These data confirm clearly the formation of CsPbCl₃ nanocrystals in the CsBCl₃-Pb (B=Sr, Ca, Mg) crystals due to aggregation of single lead centres.

This fact was also confirmed for the CsSrCl₃-Pb crystal with making use of the time-resolved low-temperature spectroscopy (T=77 K) [2].

Along with the mentioned narrow bands, intense bands in the spectral ranges $\lambda=240\div270$ nm and $\lambda = 340 \div 370$ nm exist in the X-ray luminescence of CsBCl₃-Pb (B=Sr, Ca, Mg) crystals at the pulsed X-ray excitation (Fig.2 a, b, c). According to [5,6], the luminescence bands in CsBCl₃ (B=Sr, Ca, Mg) crystals in the spectral range of λ=240÷270 nm are attributed to the emissive core-valence transitions due to recombination of the core 5p-zone holes of Cs⁺ ions and the electrons of the nearest 3p-zone of Cl⁻ ions. As seen from Fig. 2, the nature of B = Sr, Ca, Mg ion affects negligibly the structure and spectral position of the CVL peculiar for the CsBCl₃ (B=Sr, Ca, Mg) matrices. It also manifests itself in the identity of luminescent-kinetic parameters for the corevalence luminescence of the mentioned crystals $(\tau=1.5\pm0.1 \text{ ns}).$

The wide band of X-ray luminescence in CsBCl₃ (B=Sr, Ca, Mg) crystals in the spectral range of λ =340÷370 nm is attributed to the emission of single lead centres [11,12]. The

Fig.2. Luminescence spectra of CsSrCl₃-Pb (a), CsCaCl₃-Pb (b) and CsMgCl₃-Pb (c) crystals upon pulsed X-ray excitation. The detection time window is $\Delta \tau$ =100 ns, T=77 K.

time parameters of this emission get into the microsecond range [2].

Decay kinetics of the narrow-band radiation of CsPbCl₃ nanocrystals embedded in the wide-zone CsBCl₃ (B=Sr, Ca, Mg) matrices is characterized by the decay time $\tau = (1.5 \pm 0.1)$ ns. Coincidence of the luminescence kinetic parameters of CsPbCl₃ nanocrystals and those of the CVL in wide-band perovskite-like CsBCl₃ (B=Sr, Ca, Mg) matrices indicates that the luminescence of CsPbCl₃ nanocrystals is excited due to re-absorption of the CVL of CsBCl₃ (B= Sr, Ca, Mg) matrices excited by Xray quanta. High probability of re-absorption of the CVL of CsBCl₃ (B=Sr, Ca, Mg) matrices by the CsPbCl₃ nanocrystals originates from spectral overlapping of the CVL characteristic for the CsBCl₃ (B=Sr, Ca, Mg) matrices and the excitation spectrum of the narrow-band luminescence in CsPbCl₃ single crystal (see Fig.2 a, b, c and Fig.1 a, b, c; curves 1').

A direct luminescence excitation of

CsPbCl₃ nanocrystals in the CsBCl₃-Pb (B=Sr, Ca, Mg) crystals by high-energy electron-hole pairs emerging in CsBCl₃ (B=Sr, Ca, Mg) crystals under X-ray irradiation is not likely, since the CsPbCl₃ nanocrystals are electrically neutral on the whole.

The results obtained in [2] show that the dominating excitation channel of the narrow-band luminescence in CsPbCl₃ nanocrystals in the band-to-band region of CsSrCl₃ matrix (at $E_{\text{excil}} \ge 14 \text{ eV}$) is re-absorption of the CsSrCl₃ matrix CVL by Cs nanocrystals.

4. Conclusion

The luminescent-kinetic parameters for semiconducting CsPbCl₃-type nanocrystals (quantum dots) thermally created in CsBCl₃ (B=Sr, Ca, Mg) matrices are studied.

Studies of the kinetic parameters of CsPbCl₃ nanocrystals dispersed in wide-band perovskite-like matrices CsBCl₃ (B=Sr, Ca, Mg) have revealed that:

- (1) The direct optical excitation of CsPbCl₃ nanocrystals in the transparency range of the mentioned matrices (at $\lambda_{excil} \ge 300$ nm) is accompanied by the intensive luminescence of CsPbCl₃ nanocrystals with the decay time of $\tau \approx 0.5$ ns:
- (2) The excitation of CsBCl₃-Pb (B=Sr, Ca, Mg) crystals with the pulsed X-ray irradiation gives rise to luminescence of CsPbCl₃ nanocrystals with the decay time τ =(1.5±0.1) ns. The latter value is explained by the fact that the luminescence of CsPbCl₃ nanocrystals is excited due to re-absorption of the CVL characteristic of CsBCl₃ (B=Sr, Ca, Mg) matrices.

The formation of CsPbCl₃ nanocrystals embedded in wide-band CsBCl₃ (B=Sr, Ca, Mg) matrices, possessing the luminescent decay time in the nanosecond range, opens a possibility for the development of fast detectors of high-energy radiation.

References

- 1. Voloshinovskii A., Myagkota S., Gloskovskii A., Zazubovich S. Phys. Stat. Sol. B **225** (2001) 257-264.
- 2. Voloshinovskii A., Myagkota S., Gloskovskii A. and Gaba V. J. Phys.: Condens. Matter **13** (2001) 8207-8215.
- 3. Voloshinovskii A., Myagkota S., Gloskovskii A. et al. Phys. Stat. Sol. **B 226** (2003) 687-693.
- 4. Nikl M., Polak K., Nitsch K. et al . Phys. Rev. **B 51** (1995) 5192-5199.
- 5. MacDonald M., Mel'chakov E., Munro I. et. al. J. Lumin. **65** (1995) 19-23.
- 6. Kamenskich I., MacDonald M., Mikhalin V. et al. Rev. Sci. Instrum. **63** (1992) 1-5.

- 7. Apanasovich V. V. and Novikov E. G. Opt. Commun. **78** (1991) 279-281.
- Efros Al. L., Efros A. L. Sov. Phys. Tech. Semicond. 16 (1982) 1209-1214 (in Russian).
- Amitin L. N., Anistratov A. T., Kuznezov A. I. Sov. Phys.: Solid State 21 (1979) 3535
 -3541 (in Russian).
- 10.Pashuk I., Pidzyrailo N., Macko M. Sov. Phys.: Solid State **23** (1981) 1363-1365 (in Russian).
- 11. Voloshinovskii A., Pashuk I., Pidzyrailo N., Khapko Z. Ukr. Fiz. Zhurn. **28** (1983) 24-28 (in Russian).
- 12. Voloshinovskii A., Pashuk I., Pidzyrailo N., Tokarivskii M. Izv. VUZ. Phizika. №2 (1977) 154-155 (in Russian).