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Abstract

CsPbCl; nanocrystals are obtained in perovskite-like CsBCl; (B=Sr, Ca, Mg) matrices
doped with Pb ions (Cp,=0.05 and 1 mol.%). The luminescent-kinetic parameters of the
CsPbCl; nanocrystals dispersed in CsBCl; (B=Sr, Ca, Mg) matrices are studied under the
pulsed UV and X-ray excitation. The conclusion about the formation of CsPbCl;
nanocrystals is confirmed with the data of their luminescence decay kinetics and a short-
wavelength shift of the exciton luminescence maximum, when compared to that of an
excitonic luminescence in a bulk single CsPbCl; crystal. Under the pulsed X-ray excitation,
re-absorption of core-valence luminescence of CsBCl; (B=Sr, Ca, Mg) matrices with the
CsPbCl; nanocrystals is registered.

Keywords: nanocrystal, quantum size effect, luminescent-kinetic parameters, core-
valence luminescence.
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1. Introduction

Investigation of luminescent-kinetic parameters
of semiconducting CsPbCl;-type nanocrystals
(quantum dots) thermally created in CsCI-Pb,
CsSrCl;-Pb and RbPbCI;-Cs single crystals is
one of the promising ways to search for the
materials attractive for fast scintillators [1-3].

CsPbCl; nanocrystals are characterized by
an intense luminescence of free excitons with
short decay times (tens of picoseconds) [4],
which are one of the necessary conditions for
their use as fast detectors of high-energy
radiation.

Our investigations of luminescent-kinetic
parameters, performed under the high-energy
excitation, have shown that the semiconducting
CsPbCl; nanocrystals, embedded in insulator
matrices, are mainly excited due to the re-
absorption of single lead centre luminescence
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and the intrinsic matrix emission, with the slow
component (10°~107s) dominating in the
decay kinetics.

This gives rise to the slow component in
the luminescence decay kinetics of CsPbCls
nanocrystals, undesirable for fast scintillators.
Certain prospects open if the wide-band
perovskite-like CsBCl; (B=Sr, Ca, Mg) matrices
are used, exhibiting a  core-valence
luminescence (CVL) under the high-energy
excitation (E>14¢V). Since the CVL is
characterized by a short decay time
7~ (1.5£0.1) ns [5, 6], one can expect that due
to re-absorption of the matrix CVL by the
CsPbCl; nanocrystals, a luminescence can be
excited in these nanocrystals with the main
decay time t~(1.5£0.1)ns, satisfying the
conditions for the time characteristics of fast
scintillators. In order to verify this assumption,

we study in the present paper the luminescence
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kinetic parameters of the CsBCl;-Pb (B=Sr, Ca,
Mg) crystals subjected to prolonged high-
temperature annealing under the pulsed UV and
X-ray excitation.

2. Experiment

The CsBCl;-Pb ( B=Sr, Ca, Mg ) crystals were
grown by the Stockbarger method in the two
stages. At first the CsBCl; (B=Sr, Ca, Mg)
crystal matrix, and then the CsBCl;-Pb (B=Sr,
Ca, Mg) crystal were grown. Concentration of
the lead ions in the melt was 0.05 mole %
(CsCaCl;-Pb) or 1mole % (CsSrCl;-Pb,
CsMgCl;-Pb). The PbCl,
repeatedly purified with a zone smelting

material was

technique (=30 zones).

In order to form the CsPbCl; nanocrystals
dispersed in the CsBCl; (B=Sr, Ca, Mg) matrix,
the CsBCl;-Pb ( B=Sr, Ca, Mg ) crystals were
subjected to a prolonged (100 h) high-tempe-
rature (T=200°C) annealing.

Luminescence kinetic characteristics of the
crystals were measured under the pulsed UV
and X-ray excitation. Duration of the exciting
pulse T was 1.0 and 1.5 ns, respectively, with
the repetition frequency f=100kHz. The
luminescence spectra were recorded in the
single photon counting regime, with the aid of
set-up mounted on the basis of the MDR-2
monochromator. The actual luminescence
decay times were determined with taking into
account the exciting pulse shape and using the
deconvolution procedure. According to [7], the
iteration method used for the evaluation of one-
exponent parameters of the decay time curve
gives a satisfactory accuracy of approximation.
Our experimental set-up permitted us to deter-
mine the time decay constants > 0.5 ns.

The luminescence and luminescence
excitation spectra under stationary excitation
were measured with a deuterium lamp. The
required range of the exciting light was
allocated by DMR-4 monochromator. All the
measurements were carried out at T=77 K.
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3. Experimental results and discussion

The luminescence and the luminescence
emission spectra of the CsBCl;-Pb (B=Sr, Ca,
Mg) crystals at a stationary excitation are given
in Fig.1. Let us analyze the presented lumines-
cence spectra. The relatively narrow band with
the half-width AH=0.04 eV and the maximums
at Amax—414, 416 and 412 nm (Fig.1a, b, c;
curves 1) in the CsSrCl;-Pb, CsCaCl;-Pb,
CsMgCl;-Pb crystals is similar to the free-
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Fig.1. Luminescence spectra (curve 1)
and excitation spectra (curve 1! ) of
CsSrCl;-Pb (a), CsCaCls-Pb (b), CsMgCls;-
Pb (c) crystals and CsPbCl; single crystal
(d). T=77 K, %ex=300 nm .

79



S. Myagkota

exciton emission band of the CsPbCl; single
crystal (Anax=418 nm, AH=0.025 eV) (Fig.1 d,
curves 1), the spectral position of which does
not depend on the wavelength of the exciting
light. Such a similarity of the spectral
characteristics indicates that, during the high-
temperature annealing in the CsSrCl;-Pb,
CsCaCl;-Pb and CsMgCl;-Pb crystals, the lead-
containing aggregates of the CsPbCl; type
dispersed in this matrix are formed.

Such a similarity of spectral characteristics
of the mentioned luminescence bands indicates
also that, during the high-temperature annealing
CsSrCl;-Pb, CsCaCL-Pb  and
CsMgCl;-Pb crystals, the single lead centres are

in the

aggregating as nanocrystals of the CsPbCl; type
embedded in the corresponding wide-band
perovskite-like matrix.

An increase of the luminescence band half-
width of CsPbCl; aggregates dispersed in the
CsBCl; (B=Sr, Ca, Mg) matrices, when
compared to that of the CsPbCl; single crystals,
can be explained by a formation of CsPbCl;
nanocrystals of different sizes, embedded in the
CsBCl; (B=Sr, Ca, Mg) matrices.

The short-wave shift of the emission band
maximum of CsPbCl; nanocrystals in the
CsBCl; (B=Sr, Ca, Mg) matrices with respect to
the position of the maximum of free exciton
emission band in CsPbCl; single crystal by
AE=60, 84 and 45 meV, respectively, can be
interpreted as a manifestation of quantum size
effect. Using the relation between the
magnitude of the short-wave shift and the
average radius Rqp of the nanocrystal [8]

W’
= —2 B
2IURQD
where p=0.65my [9, 10] is the reduced mass of

(M

exciton for the CsPbCl; single crystal (mg
denoting the mass of a free electron), we
determine the average radius of the CsPbCl;
type nanocrystals dispersed in the CsBCl;
(B=Sr, Ca, Mg) matrices (Rop=2.8, 3.8 and 4.0
nm in the CsSrCl;, CsCaCl; and CsMgCls,
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respectively).

The conclusion about the formation of
CsPbCl; nanocrystals is confirmed by the data
of their luminescence decay kinetics. The
luminescence decay time for the CsPbCl; nano-
crystals dispersed in CsBCl;-Pb (B=Sr, Ca, Mg)
crystals under the excitation in the matrix trans-
parency region for CsSrCl;, CsCaCl; and
CsMgCl; (Aex 2300 nm) is described by the
exponent with the decay time of 1=0.5 ns. The
same exponent describes the luminescence
decay kinetics curves for CsPbCl; single crystal
excited in the same spectral region. These data
confirm clearly the formation of CsPbCl;
nanocrystals in the CsBCl;-Pb (B=Sr, Ca, Mg)
crystals due to aggregation of single lead
centres.

This fact was also confirmed for the
CsSrCl3-Pb crystal with making use of the time-
resolved
(T=77K) [2].

Along with the mentioned narrow bands,

low-temperature spectroscopy

intense bands in the spectral ranges A=240+270
nm and A=340+370 nm exist in the X-ray
luminescence of CsBCl;-Pb (B=Sr, Ca, Mg)
crystals at the pulsed X-ray excitation (Fig.2 a,
b, ¢). According to [5,6], the luminescence
bands in CsBCl; (B=Sr, Ca, Mg) crystals in the
spectral range of A=240+270 nm are attributed
to the emissive core-valence transitions due to
recombination of the core 5p-zone holes of Cs"
ions and the electrons of the nearest 3p-zone of
CI' ions. As seen from Fig. 2, the nature of
B=Sr, Ca, Mg ion affects negligibly the
structure and spectral position of the CVL
peculiar for the CsBCl; (B=Sr, Ca, Mg)
matrices. It also manifests itself in the identity
of luminescent-kinetic parameters for the core-
valence luminescence of the mentioned crystals
(1=1.5%0.1 ns).

The wide band of X-ray luminescence in
CsBCl; (B=Sr, Ca, Mg) crystals in the spectral
range of A=340+370 nm is attributed to the
emission of single lead centres [11,12]. The
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Fig.2. Luminescence spectra of CsSrCl;-Pb
(a), CsCaCls-Pb (b) and CsMgCls-Pb (c)
crystals upon pulsed X-ray excitation. The
detection time window is At=100 ns, T=77 K.

time parameters of this emission get into the
microsecond range [2].

Decay kinetics of the narrow-band radi-
ation of CsPbCl; nanocrystals embedded in the
wide-zone CsBCl; (B=Sr, Ca, Mg) matrices is
characterized by the decay time t= (1.5+0.1) ns.
Coincidence of the luminescence kinetic para-
meters of CsPbCl; nanocrystals and those of
the CVL in wide-band perovskite-like CsBCl;
(B=Sr, Ca, Mg) matrices indicates that the
luminescence of CsPbCl; nanocrystals is
excited due to re-absorption of the CVL of
CsBCl; (B= Sr, Ca, Mg) matrices excited by X-
ray quanta. High probability of re-absorption of
the CVL of CsBCl; (B=Sr, Ca, Mg) matrices by
the CsPbCl; nanocrystals originates from
spectral overlapping of the CVL characteristic
for the CsBCl; (B=Sr, Ca, Mg) matrices and the
excitation spectrum of the narrow-band
luminescence in CsPbCl; single crystal (see
Fig.2 a, b, c and Fig.1 a, b, ¢; curves 1°).

A direct luminescence excitation of
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CsPbCl; nanocrystals in the CsBCl;-Pb (B=Sr,
Ca, Mg) crystals by high-energy electron-hole
pairs emerging in CsBCl; (B=Sr, Ca, Mg)
crystals under X-ray irradiation is not likely,
since the CsPbCl; nanocrystals are electrically
neutral on the whole.

The results obtained in [2] show that the
dominating excitation channel of the narrow-
band luminescence in CsPbCl; nanocrystals in
the band-to-band region of CsSrCl; matrix (at
Eeic>14 €V) is re-absorption of the CsSrCls
matrix CVL by Cs nanocrystals.

4. Conclusion

The luminescent-kinetic  parameters  for

semiconducting CsPbCls-type  nanocrystals
(quantum dots) thermally created in CsBCl;
(B=Sr, Ca, Mg) matrices are studied.

Studies of the kinetic parameters of
CsPbCl; nanocrystals dispersed in wide-band
perovskite-like matrices CsBCl; (B=Sr, Ca, Mg)
have revealed that:

(1) The direct optical excitation of CsPbCl;
nanocrystals in the transparency range of the
mentioned matrices (at Aexi=>300 nm) is accom-
panied by the intensive luminescence of
CsPbCl; nanocrystals with the decay time of
7~0.5 ns;

(2) The excitation of CsBCl;-Pb (B=Sr,
Ca, Mg) crystals with the pulsed X-ray
irradiation gives rise to luminescence of
CsPbCl; nanocrystals with the decay time
1=(1.5+0.1) ns. The latter value is explained by
the fact that the luminescence of CsPbCl,
nanocrystals is excited due to re-absorption of
the CVL characteristic of CsBCl; (B=Sr, Ca,
Mg) matrices.

The formation of CsPbCl; nanocrystals
embedded in wide-band CsBCl; (B=Sr, Ca,
Mg) matrices, possessing the luminescent decay
time in the nanosecond range, opens a
possibility for the development of fast detectors
of high-energy radiation.
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