Modeling of phase relief of holographic diffraction gratings:
application to self-developing photopolymers

M. V. Shovgenyuk, P. A. Hlushak, Yu. M. Kozlovskii,
E. A. Tikhonov* T. N. Smirnova*, P. V. Ezhov*

Institute of Condensed Matter Physics of the National Academy of Sciences of Ukraine,

1 Svientsitskii St., Lviv 79011 Ukraine.

*Institute of Physics of the National Academy of Sciences of Ukraine, 46 Prospect Nauki,
Kyiv 03083. Ukraine, e-mail: etikh@iop.kiev.ua

Received 13.09.2001
After revision 21.01.2002

Abstract

The thin holographic diffraction gratings with periodic surface/internal spatial
phase modulation are investigated. The dependences of the efficiency in the
various diffraction orders are measured and calculated in supposed profiles of
phase relief. The calculated results are compared with experimental data of
holographic phase gratings recorded in self-developing photopolymers. The
numerical values of the phase shift A of experimental samples are determined. It
was found, that the surface relief conforms satisfactory the two-parabolic model,
whereas the internal modulation profile in the volume of photopolymer can be well

described with two-cylindrical model of the phase relief.

Keywords: thin phase holographic grating, diffraction orders, Wiener spectrum, spatial
phase modulation, self-developing holographic photopolymer, surface and
volume spatial modulation
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1. Introduction

The Damman approach is the most popular
method to design the periodic phase relief of
diffracted optical elements [1]. The arbitrary
phase profile of the elementary cell is resulted in
addition to finite number of steps, characterized
by the constant phase shift. Such a model cor-
responds to the conditions of preparing the
“multilevel” optical elements by means of
photolithography.

However the description of the phase relief
by the steps can’t be considered as the satisfac-
tory one in the case of the periodic profile of the
optical elements obtained by the holographic re-
cording, in particular, in the case of the self-de-
veloping photopolymer materials. In the latter
case the modulating function of the phase relief
is smooth and continuous. While recording the
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interference pattern of two light waves one often
supposes a typical harmonic phase profile light
diffraction which can be well described by
means of the expansion into a series with res-
pect to the Bessel functions. Such an expansion
can be also used in more complicated inharmo-
nic phase profile [2]. Recently, the phase ele-
ments with parabolic [3,4] and cylindrical [5]
phase relief have attracted a special attention.
They are characterized by a higher diffraction
efficiency in comparison with the harmonic
phase relief.

In the present paper, basing on the method
of signal coordinate-frequency distribution [6,7]
we have studied the peculiarities of the Wiener
of the thin
holographic gratings with the phase profile
which is modelled by the curves of the second

spectra of space frequencies
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order. Early [8] such an approach was used in
description of the Wiener spectra of quasi-
orthogonal and random binary phase elements.

2. Wiener spectra of the periodic phase
elements (PPE)

Let us consider the periodic phase element

1= £ (0)8(—nT),

n=—w

£o(x) = rect(%j explizd(x)], (1)

where rect(x/T) is the rectangle function [9],

which is described by the continuous phase
function ¢(x) for —T/2 < x <T/2, where T is

the spatial period. For a given element, which
forms the stationary optical signal with the
given phase distribution while a plane
monochromatic wave illuminates it, let us
construct the basic functional in the form of the

ambiguity function [6]

W/f* (xy;0,) =
y X ) o[ X .
= lf(er?jf [x 5 jexp( iw,x)dx

where f (x) is the complex conjugate optical

signal. On the basis of the definition (1) the
coordinate-frequency distribution of PPE is

2)

given by the expression:

w ,(xo;a)o) =@, X

Z Z( "W, (% = nTsmay,)x
nom=— 3)
o(w, —ma,,)

where Wﬁ* (x,;w,) is the coordinate-frequency

distribution of the elementary cell, @,, =27/T
is the spatial frequency of the phase profile.

For the calculation of the Wiener spectrum
of PPE let us put w, =0 in the distribution (2).
Then the Wiener spectrum is calculated as
follows:

[F(o)] = j - (x,;0) exp(—iex, )dx, )
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After substituting (4) the explicit expres-
sion of the distribution (3) the Wiener spectrum
of the spatial frequencies of the periodic phase
elements can be written in the general form

©

[F(@)] =y Y [Fy(no,)] §(@-no,) )

where [E) (mum)]2 is the intensity of the Wiener

spectrum of the spatial frequencies of the
periodic phase element in the n-th order of the
diffraction, which is calculated as a discrete
sample of intensities in the equidistance points

from the continuous Wiener spectrum [Fo(cu)]2

of the elementary cell of the phase relief:

T/2

[E)(a))]2 = I exp[iﬂqﬁ(x)]exp(—ia)x)dx} . (6)

-T/2

Thus, having the results of the calculation
of the Wiener spectrum of the elementary cell
one uniquely obtains the intensities of the
Wiener spectrum of the phase elements in
different orders of diffraction.

Study of some typical profiles, in
particular, of the parabolic and harmonic ones
was performed in [3,4]. Within the frames of the
suggested approach let us describe more
complicated profiles of the elementary cell of
the periodic phase element.

Let us write the phase profile of the
elementary cell in the general form of the joined
curves of the second order ¢, (x) and ¢,(x)

shifted by a half period

fo(x)=rect [i] explizd (x)]
yT

+rect ( ?1__77:;; ] explizg, (x)] 7

where a join point of two rectangle profiles is
given by the parameter yv=2x_/T (0 v 1),
where the coordinate of continuous joining of

two curves x, is determined on the conditions:

dg (x)/dx,_, =d@,(x)]dx _, ® (8)
¢1 (xc) = ¢2 (xc ) (9)
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Two-parabolic relief of the elementary cell.
According to Eq. (7) let us write the equation of
the parabolic reliefs:

2x 2‘
¢I(x)=¢max — D (7) 5

A(X) =D +p2(2_;_lj . (10)

A construction of two-parabolic relief of
the elementary cell at « = p, / p, = 2 is shown

in Fig. 1 (downward). Here to simplify, we
consider the following unit interval in which the

phase changes: A¢p=|¢ . —¢... [=1.
Eq. (8) of two-parabolic relief one gets the

From

following value of the joining parameter - :

P
y=—=2 (11)
D+ D,
While Eq. (9) is satisfied with the

continuous joining of the parabolas and with the
coefficients p, and p, the phase different A¢

of the two-parabolic relief as it is shown in Fig.
1 (upward) can be determined according to

b+ D

e -

Xh._

T T+
-T2 e 0 X T2

Fig.1. The construction of the two-
parabolic relief.
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Taking different values of the coefficients
p, and p, and consequently changing the
value of 7, one gets different forms of the
parabolic phase relief.
Two-cylindric relief of the elementary cell.

Let us write the equations of cylindrical profiles
in the form

2’/1_ ﬁZ_Z_XZ‘
()= | 2 (Tj (T] :

_2;’2 2r, ' (2x ?
R ORI

As it is shown in Fig. 2 we consider the
general case when the centers of the cylinders
lie on the line which has a slope ¢ with respect

to the axis 0X. Since the point of touching of
both cylinders is in that line the condition (8) is
fulfilled automatically. In this case for the
cylinder radii one can write

(r, +r,)cosp =T/2. Therefore, the coordinate
of touching the cylinders x, and the joining

parameter -y are calculated according to the

formula
X, =rcosg; y=—1—. (14)
htn
For two-cylindrical relief the phase

difference A® of the periodic phase element as
is shown in Fig.2 (upward) is calculated
according to the formula:

AP = P = Prin = (11 + 1)1 = 5N Q). (15)

In this case we have two independent
parameters: the parameter v and the angley.

This  circumstance  provides  additional
possibilities to design different forms of two-
cylindrical phase profile. The suggested method
to design the elementary cell may be used in the
description of the more complicated phase
profile. However, for modeling the phase relief
which is formed in a real self-developing
photopolymer material it is sufficiently to use

only the curves of the second order.
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Fig.2. The construction of two-cylindrical phase relief.

3. Diffraction efficiency of PPE with the
parabolic and cylindrical profiles

In the frame of the work it was important to see
the effect of the form of the phase relief on the
diffraction efficiency of the periodic phase ele-
ments. In Figs. 3 and 4 the results of numerical
computation of the diffraction efficiency in the 1
st order of diffraction depending on rations of

p, and p, and 7 and r, are shown.
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Fig.3. The dependence of the maximum of
the diffraction efficiency in the =+ 1 order of
diffraction by two-parabolic phase profile on

the parameter = p, / p, .
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For two types of the studied phase elements

one observes a general tendency of an
increasing of the maximum of the diffraction ef-
ficiency while passing from the one-element
(a=0, 0=0) to the symmetric two-element
(a=1, o =1) phase profile. Thus, the formation
of the phase profile, which is close to the sym-
metric two-element one is the definite way to in-
crease the diffraction efficiency of the thin

gratings.
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Fig.4. The dependence of the maximum of

the diffraction efficiency in rhe =+ 1% order
of diffraction by two-cylindric phase profile

on the parameter o =7, /1.
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The quantities DE__ essentially depends on

the form of the basic phase profile. The
parabolic profile of the minimal value [3,4]
DE,, = 0.2753 smoothly increases to the value

DE,_ . = 0.35. the cylindrical interval 0 < ¢ <

0.07 the quantity DE decreases somewhat.
However, with further increases of o the
diffraction efficiency of two-cylindrical phase
and becomes

profile rapidly grows up

DE_ ~ 0.37 which overcomes the limiting

value DE__ for the symmetric two-parabolic

phase profile.
In Fig. 5 and 6 the numerical calculation of
the phase difference A¢ of the optical element,

in the case the value DE_, is max, are shown

different values of parameters o and o . In both
studied types of PPE the position of DE_ _ in
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Fig.5. The change of the phase shift A¢in
the maximum of diffraction efficiency (Fig.3)
as a function of the relation oo = p, / p, .
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Fig.6. The change of the phase shift A¢ in

the maximum of diffraction efficiency
(Fig.4) as a function of the relation

o=rnln.
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the =£1st diffraction order moves towards
smaller values A¢ while passing the symmetric
two-element form of phase profile.

As can be seen, the parabolic phase relief
the value A¢ right along decreases in the
interval 1.32m=1.157. As to the cylindrical
phase profile one observes somewhat different
behavior. At first the phase shift A¢ in the
maximum of the diffraction efficiency decreases
fast from its maximal value A¢~1.7mras o
increases. Then as to o >0.25 the position of
DE

X

value A¢ ~1.1x.

The obtained result permits to state, that

remains constant and corresponds to the

forming the two-cylindrical profile of the
elementary cell gives the possibility to achieve
the value DE_,

shift A¢

at smaller value of the phase

X

4. Experimental results

The important part of the conducted inves-
tigation consists of restoring the phase profile of
the thin holographic gratings that were recorded
on the self-developing photopolymers PPC-488
[11]. The set task is solved by consequent
analysis of the measured and calculated the
Wiener spectra of some assumed profiles that
checked
experiment. The examination of the relief

can be independently of the
formation under holographic recording of the
thin photopolymer gratings has been previously
undertaken in our work [11].

Testing the above presented theoretical
model three basic types of phase holographic
thin grating have been done. The sample #1 was
recorded under conditions, when the phase
modulation had extremely surfaced the
origination and there was no volume modulation
of an refraction index. The shape of the surface
relief was measured by micro-interferometer
and is shown in a Fig. 7a.

The sample #2 in opposite was recorded

under conditions when the phase modulation of

Ukr. J. Phys. Opt. V3. Nal
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a)

b)

Fig. 7. The surface relief resulted from holographic recording a)-sample #1; b)-sample #3.
The thin gratings with thickness 20 um and spatial period 50 um are recorder Ar-laser in

photopolymer PPC-488.

the photopolymer film was extremely to score
the volume variation of an refraction index.

The sample #3 was recorded in most
broadly realised conditions, when the surface
relief as well as the volume modulation of the
refraction index in photopolymer medium took
place. We have proved earlier that maximums of
the refraction index in polymer film volume
coincide with minimums of the relief on its
surface.

The used procedure of the phase profile
parameters calculation lay in the following. As
the first step of the calculation the relative inten-

sities /, /1, are determined, where »n=1,2,3...

are the diffraction order of the Wiener spectrum.
Calculated values depend on the phase shifts
that in turn is related to arbitrary selected
parameters of a parabolic or cylindrical type of
the phase profiles. The family of the calculated
1,71,

datum as horizontal lines are superimposed. The

dependences and the experimental

intersection points of the experimental lines
with relevant curves of the diffraction efficiency
show the value of the relative intensity of the
Wiener spectrum. Since there are some
intersection points in experimental lines and a
theoretical curve therefore for one order of the
diffraction the problem has no singular solution.
However with results of measured intensities in

several (more than 3 diffraction orders ) it is

Ukr. J. Phys. Opt. V3. Nal

possible to find out the singular spatial profile
where all intersection points are located near the
same phase shift. For searching the best value
A¢,.., the special program has been designed.

In a Fig.8 the results of the calculation of
relative intensities of the Wiener spectrum of the
parabolic relief in the range 0.1<A¢ <1.0 are
given, for the first six orders of the diffraction.
On this diagram the experimental (normalized to
zero order intensity) the diffraction intensities of
sample 1 are traced by horizontal lines. As it is
also seen from Fig.7a, the surface relief of
sample #1 is the closest to the parabolic shape.
It is found, by the method of computer
modelling that for the relation p,/p =6 of

parabolas the intersection points direct in 2-nd
up to 5-th diffraction orders are close bunched
near to a mean Ag, ,~0.510x . Taking into

account that intersection points biased in 1-st
and 6-th diffraction orders in the opposite parts
from the mean, we have received for sample #1
the mean phase shift Ag, , ~0.502z , which only

in the third sign differs from the previous value.
It gives hint to propose that model of the
parabolic phase relief most conforms to the
shape of surface phase relief of sample #1. As
Ap=2rh/A)An, where h- height of a phase

relief, A-wave length of a light, An-odds of
indexes of refraction, for a given sample we
gain hAn~0.2514
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Fig.8. Relative intensities of Wiener spectrum of a parabolic phase relief at p, /pl =6 from
the phase shift A¢ in the first six diffraction orders. (The dashed lines trace experimental

dates for a sample #1).

In the table 1 we cite the normalized inten-
sities (/y is the zero-order diffraction intensity)

Sample #2 presents the particular interest
because there was no information about the
shape of the phase profile in volume medium of
The conducted
examinations have shown that for the sample #2

the photopolymer material.

parabolic models of the phase relief are not
suitable. In Fig. 9 the results of calculation of
relative intensities of the Wiener spectrum in the
first four diffraction orders of the sample #2 are
presented in the case of the cylindrical shape of
the phase relief. The cylindrical model at value
of parameters o =2.85,¢ =0.137, conforms to
a phase profile, quite well which was shaped in
the photopolymer film volume medium of the
photopolymer compound. The mean of the
phase shift equals Ag,,, ~0.227x .

Let us analyze this quantity. Let us assume
that harmonic shape of the phase profile in this

case is fit and the diffraction intensity in all
orders is described by the Bessel functions:

1,11, =J%(xA$/2)/ J*o(7A$/2) . Using nume-
rical values of the Bessel functions for all orders
[10], for the first
has: J2, (7A@ /2)/ J*o(7A$/2) = 0.056 , that cor-
responds 7A@/2=0.4606. From here we gain
A¢p=0.293. Thus, we have gained A¢ quite

diffraction order one

close to one in our procedure. For other orders
the pattern essentially differs. Data of experi-
mental measurements that were treated with the
harmonic model give: 2 order diffraction -
Ap=0.464r; 3-rd
Ap=048Tz; 4-th
A¢=0.7857r . Thus for sample #2 the harmonic

order diffraction -

order diffraction -

model gives poor description of higher diffracti-
on orders, in spite of the first order is described
well.

Results of examination thin gratings #1 and #2

Table 1.
Sample 1,/1, L,/1, L/1, 1,/1, I,/1, I,/1,
1 2.1x10" [ 9.3x107 | 1.3x10° | 2.0x10° | 3.3x10* | 2.3x10*
2 5.6x107 | 53x10° | 1.1x10" | 7.3x107
8.8x10" | 6.6x10" | 3.4x10"  [3.9x10" | 3.4x10

58
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M= 0.245

0.1 0.2 0.3 0.4 0.5

Fig.9. Relative intensities of Wiener

spectra of a cylindrical

phase profile at

parameters o =2.85,¢ =0.137, as function of the phase shift A¢ in the first four diffraction.
(The dashed lines trace experimental data for a sample #2)

allow to put forward the guess, that for the sam-
ple of grating #3, which was formed by the sur-
face and volume phase modulation, is possible
to describe by model of “two-parabolic+two-cy-
lindrical” of the phase profile. For the similar
model the calculation program of the Wiener
spectrum in different diffraction orders depen-
ding on both profiles is composed simultaneous-
ly. Fig. 10 presents the calculation results for

00

first five orders of the Wiener spectra. The expe-
rimental lines are seen to intercross the relevant
theoretical curves in points, which are distribu-
ted in much more greater interval of values A,
than for samples #1 and #3. It is the hint that the
offered model features make the case worse and
the next improvement of the model is necessary.

In spite of the proposed theoretical model

of the phase profile is approximate, the

0.2 4

0.4

lg(1 /1)

-0.6

-0.8 4

1.0

A2+

\

Ay 1833

Ad 1.9S0

7
ap 1.78]

12 13 14 15 16 17 18 18 20 21 22

a4

Fig.10 Relative intensities of a Wiener spectrum cylindrical + parabolic phase profile at
parameters ¥ =0.75,¢ =0 as function of A¢. (The dashed lines trace experimental dates

for a sample #3).
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intersection points of the experimental lines
correspond to major values A¢, that agree with

experimental data on Fig. 7b. On the basis of the
conducted examinations for sample #3 we have
gained the mean phase shift A¢ ~1.8497 . The
medial
different diffraction orders equals value
0.1057 . Therefore we hope that the offered
model can be used as the first approximation in

quadratic dispersion of values in

the description of similar gratings.

The conducted investigation is concluded
in the following: the comparative examination
of the experimental Wiener spectra and the
theoretical calculation of the Wiener spectra of
the periodic phase structures presents the basic
to restore parameters of the phase profile. The
offered procedure, which is founded on prime
experimental examinations, can be used for
manufacturing the holographic optical elements
with the given phase profile.
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