Ukrainian Journal of Physical Optics 

Volume 22, Issue 4, 2021

Home page
 
 

Other articles 

in this issue
Structural, morphological and luminescence studies of Fe-doped PbI2 crystals

Rybak O. V. and Chekaylo M. V.

Lviv Polytechnic National University, 12 S. Bandera Street, Lviv 79013, Ukraine

Download this article

Abstract. We present the results of X-ray diffraction studies for undoped and Fe-doped single crystals of lead iodide in the concentration range 0.01–0.25 at. %. PbI2 and PbI2:Fe crystals are obtained by crystallization from a vapour phase in a closed system under over-stoichiometric iodine-vapour pressure. Morphology of the crystals has been analyzed by a scanning electron microscopy. The effect of iron doping on the low-temperature (T = 4.2 K) photoluminescence spectra of lead iodide has been elucidated.

Keywords: lead iodide crystals, iron doping, X-ray diffraction patterns, photoluminescence spectra 

UDC: 535.37
Ukr. J. Phys. Opt. 22 270-278
doi: 10.3116/16091833/22/4/270/2021
Received: 31.10.2021

Анотація. Наведено результати рентгеноструктурних досліджень нелегованих і легованих Fe монокристалів йодиду свинцю у діапазоні концентрацій 0,01–0,25 ат. %. Кристали PbI2 і PbI2:Fe одержано кристалізацією з парової фази в закритій системі під надстехіометричним тиском парів йоду. Морфологію цих кристалів проаналізовано за допомогою скануючого електронного мікроскопа. З’ясовано вплив легування залізом на низькотемпературні (Т = 4,2 К) спектри фотолюмінесценції йодиду свинцю.

Ключові слова: кристали йодиду свинцю, легування залізом, дифрактограми, спектри фотолюмінесценції

REFERENCES
  1. Zhu X, Sun H, Yang D, Wangyang P and Gao X, 2016. Comparison of electrical properties of X-ray detector based on PbI2 crystal with different bias electric field configuration. J. Mater. Sci. Mater. Electron. 27: 11798-11803. doi:10.1007/s10854-016-5320-9
  2. Caldeira Filho A M and Mulato M, 2011. Characterization of thermally evaporated lead iodide films aimed for the detection of X-rays. Nucl. Instr. Meth. A. 636: 82-86. doi:10.1016/j.nima.2011.01.093
  3. Lee C H, Shin Y, Jeon G, Kang D, Jung J, Jeon B, Park J, Kim J and Yoon C, 2021. Cost-efficient effect of low-quality PbI2 purification to enhance performances of perovskite quantum dots and perovskite solar cells. Energies. 14: 1-12. doi:10.3390/en14010201
  4. Gujar T P, Under T, Schonleber A, Fried M, Panzer F, Smaalen S, Kohler A and Thelakkat M, 2018. The role of PbI2 in CH3NH3PbI3 perovskite stability, solar cell parameters and device degradation. Phys. Chem. Chem. Phys. 20: 605-614. doi:10.1039/C7CP04749E
  5. Li R, Zhang H, Zhang M and Guo M, 2018. Effect of PbI2 solution on air-preparation of perovskite solar cells for enhanced performance. Appl. Surf. Sci. 458: 172-182. doi:10.1016/j.apsusc.2018.07.083
  6. Murugadoss G, Thangamuthu R, Kumar M R and Ravishankar R, 2019. Organic-free indium-doped cesium lead iodide perovskite for solar cell application. Micr. Nano Lett. 14: 1385-1387. doi:10.1049/mnl.2019.0321
  7. Zhong M, Huang L, Deng H-X, Wang X, Li B, Wei Z and Li J. 2016. Flexible photodetectors based on phase dependent PbI2 single crystals. J. Mater. Chem. C. 4: 6492-6499. doi:10.1039/C6TC00918B
  8. Augustoa G S, Oliveirab T A, Mouraa G M, Silvaa C C, Condelesb J F, Moretob J A, Oliveiraa P R, Mulatoc M and Gelamoa R V, 2019. Development and characterization of PbI2 nanoparticles for all solid-state flexible supercapacitor purposes. Mater. Res. 22: 1-8. doi:10.1590/1980-5373-mr-2018-0886
  9. Miysaka T, 2015. Perovskite photovoltaics: rare functions of organolead halide in solar cells and optoelectronic devices. Chem. Lett. 44: 720-729. doi:10.1246/cl.150175
  10. Pogorily A M, Ryabchenko S M and Tovstolytkin A I, 2010. Spintronics. Basic phenomena. Trends of development. Ukr. J. Phys. 6: 37-97.
  11. Rybak O V, 2019. Growth and properties of Mn-doped PbI2 crystals. Inorg. Mater. 55: 612-616. doi:10.1134/S0020168519060141
  12. Vertegel I G, Chesnokov E D, Ovcharenko O I, Bukivskii A P and Gnatenko Yu P, 2019. Influence of Mn2+ ions on parameters of the I127 NQR spectrum of a mixed layered Pb1-xMnxI2 semiconductor. Func. Mater. 26: 744-747.
  13. Rybak O V, Lun' Yu O, Bordun I M and Omelyan M F, 2005. Crystal growth and properties of PbI2 doped with Fe and Ni. Inorg. Mater. 41: 1272-1276. doi:10.1007/s10789-005-0271-1
  14. Stolyarchuk I D, Savchuk A I, Makoviy A I, Shporta O A, Savchuk O A, Stefaniuk I and Rogalska I, 2013. Optical and magneto-optical properties of PbFeI2 nanoparticles. Proc. SPIE. 9066: 1-6. doi:10.1117/12.2048676
  15. Kramar AV, Kramar N K, Melnychuk S V and Melnyk P I, 2004. Intracentre absorption spectra by the 3d-group impurity ions in PbI2. Phys. Chem. Solid State. 5: 91-93.
  16. Beckmann P A, 2010 A review of polytypism in lead iodide. Cryst. Res. Technol. 45: 455-460. doi:10.1002/crat.201000066
  17. Shah M A and Wahab M A, 2000. Growth rate and symmetry of polytypes in MX2-compounds. J. Mater. Sci. Lett. 19: 1813-1816. doi:10.1023/A:1006746407554
  18. Kaur H, 2014. Challenges in the study of polytypism in MX2 compounds. Adv. Appl. Sci. Res. 5: 259-261.
  19. Chaudhary S K, 2012. Lead iodide crystals as input material for radiation detectors. Crystal structure theory and applications. 1: 21-24. doi:10.4236/csta.2012.13004
  20. Nakashima S, 1975. Raman study of polytypism in vapour grown PbI2. Solid State Commun. 16: 1059-1062. doi:10.1016/0038-1098(75)90003-4
  21. Cong C, Shang J, Niu L, Wu L, Chen Y, Zou C, Feng S, Qiu Z-J, Hu L, Tian P, Liu Z, Yu T and Liu R, 2017. Anti-Stokes photoluminescence of van der Waals layered semiconductor PbI2. Adv. Opt. Mater. 5: 1700609. doi:10.1002/adom.201700609
  22. Palosz B, Steurer W and Schulz H, 1990. The structure of PbI2 polytypes 2H and 4H: a study of the 2H-4H transition. J. Phys.: Condens. Matter, 2: 5285-5295. doi:10.1088/0953-8984/2/24/001
  23. Rybak O V, Semkiv I V and Chekailo M V, 2020. Growth and properties of Cd-doped PbI2 crystals. J. Nano- and Electron. Phys. 12: 01019. doi:10.21272/jnep.12(1).01019
  24. Kurilo I V and Rybak O V, 2002. Effect of growth conditions on the morphology and structural perfection of vapor-grown PbI2 crystals. Inorg. Mater. 38: 288-291. doi:10.1023/A:1014787220190
  25. Rybak O V and Kurilo I V, 2002. Mass transport in the PbI2-I2 system. Inorg. Mater. 38: 854-858. doi:10.1023/A:1019795215165
  26. Kozlova O G. Morphological and genetic analysis of crystals. Moscow: MGU Press, 1991.
  27. Lin D Y, Guo B C, Dai Z Y, Lin C F and Hsu H P, 2019. PbI2 single crystal growth and its optical property study. Crystals, 9: 598. doi:10.3390/cryst9110589
  28. Brodin M S, Bibik V A and Davydova N A, 1989. Phase transformations of the order-disorder-order type in layered PbI2 crystals under the action of laser radiation. Fiz. Tverd. Tela. 31: 117-122.
  29. Derenzo S T, Bourret-Courchesne E, Yan Z, Bizarty G, Canning A and Chang G, 2013. Experimental and theoretical studies of donor-acceptor scintillation from PbI2. J. Lumin. 134: 28-34. doi:10.1016/j.jlumin.2012.09.022
  30. Blazhkiv V S, Gamernyk R V and Grigorovich V M, 1992. Defect system in PbI2 crystals. Ukr. Fiz. Zhurn. 37: 425-428.
  31. Rybak O, Blonskii I V, Bilyi Ja M, Lun Yu, Makowska-Janusik M, Kasperczyk J, Berdowski J, Kityk I V and Sahraoui B, 1998. Luminescent spectra of PbI2 single crystals doped by 3d-metal impurities. J. Lumin. 79: 257-267. doi:10.1016/S0022-2313(98)00041-6
(c) Ukrainian Journal of Physical Optics