Home
page
Other articles
in this issue |
Temperature behaviour
of fundamental absorption edge in superionic Ag6PS5I
crystals
1Studenyak I. P., 1Pop M. M., 1Shender
I. O., 1Pogodin A. I. and 2Kranjcec M.
1Uzhhorod National University, 46 Pidhirna
Street, 88000 Uzhhorod, Ukraine. studenyak@dr.com
2North University, 33 J. Križanića Street,
42000 Varazdin, Croatia mladen. kranjcec@yahoo.com
Download this
article
Abstract. Ag6PS5I single crystals are grown
from solution–melt by means of a vertical zone crystallization method.
Dispersion of the refractive index of Ag6PS5I measured
with a spectral ellipsometry technique is described by a known Wemple–DiDomenico
relation. The fundamental absorption edge for the Ag6PS5I
crystals is studied in the temperature range 77–300 K. The temperature
dependences of the optical pseudogap and the Urbach energy are analyzed
in the framework of Einstein model. The parameters of electron–phonon
interaction, which results in the Urbach behaviour of the fundamental absorption
edge, are determined. The influence of temperature and structural disorderings
on the optical absorption in Ag6PS5I is studied.
Keywords: superionic conductors, crystal growth,
spectral ellipsometry, fundamental absorption edge, structural disorder
UDC: 535.343
Ukr. J. Phys. Opt. 22 216-224
doi: 10.3116/16091833/22/4/216/2021
Received: 27.09.2021
Анотація. Монокристали Ag6PS5I
вирощено з розчину–розплаву за методом
кристалізації у вертикальній зоні. Дисперсія
показника заломлення Ag6PS5I,
виміряна за методом спектральної еліпсометрії,
описується відомим співвідношенням Вемпла–ДіДоменіко.
Досліджено фундаментальний край поглинання
кристалів Ag6PS5I у діапазоні
температур 77–300 К. Температурні залежності
оптичної псевдощілини та енергії Урбаха
проаналізовано в рамках моделі Ейнштейна.
Визначено параметри електрон–фононної
взаємодії, що приводить до урбахівської
поведінки фундаментального краю поглинання.
Досліджено вплив температурних і структурних
розупорядкувань на оптичне поглинання
в Ag6PS5I.
Ключові слова: суперіонні провідники,
ріст кристалів, спектральна еліпсометрія,
край фундаментального поглинання, структурне
розупорядкування |
|
REFERENCES
-
Ohno S, Banik A, Dewald G F, Kraft M A, Krauskopf T, Minafra N, Till P,
Weiss M and Zeier W G, 2020. Materials design of ionic conductors for solid
state batteries. Progr. Energy. 2: 022001. doi:10.1088/2516-1083/ab73dd
-
Grey C P and Hall D S, 2020. Prospects for lithium-ion batteries and beyond
- a 2030 vision. Nature Commun. 11: 6279. doi:10.1038/s41467-020-19991-4
-
Sun Y-K, 2020. Promising all-solid-state batteries for future electric
vehicles. ACS Energy Lett. 5: 3221-3223. doi:10.1021/acsenergylett.0c01977
-
He X, Zhu Y and Mo Y, 2017. Origin of fast ion diffusion in super-ionic
conductors. Nature Commun. 8: 15893. doi:10.1038/ncomms15893
-
Kuhs W F, Nitsche R and Scheunemann K, 1979. The argyrodites - a new family
of tetrahedrally close-packed structures. Mat. Res. Bull. 14: 241-248.
doi:10.1016/0025-5408(79)90125-9
-
Nilges T and Pfitzner A, 2005. A structural differentiation of quaternary
copper argyrodites: Structure - property relations of high temperature
ion conductors. Z. Kristallogr. 220: 281-294. doi:10.1524/zkri.220.2.281.59142
-
Zhou L, Assoud A, Zhang Q, Wu X and Nazar L F, 2019. New Family of argyrodite
thioantimonate lithium superionic conductors. J. Amer. Chem. Soc. 141:
19002-19013. doi:10.1021/jacs.9b08357
-
Studenyak I P, Stefanovich V O, Kranjcec M, Desnica D I, Azhnyuk Yu M,
Kovacs Gy Sh and Panko V V, 1997. Raman scattering studies of Cu6PS5Hal
(Hal = Cl, Br, I) fast-ion conductors. Solid State Ionics. 95: 221-225.
doi:10.1016/S0167-2738(96)00477-8
-
Beeken R B, Garbe J J, Gillis J M, Petersen N R, Podoll B W and Stoneman
M R, 2005. Electrical conductivities of the Ag6PS5X and the Cu6PSe5X (X
= Br, I) argyrodites. J. Phys. Chem. Solids. 66: 882-886. doi:10.1016/j.jpcs.2004.10.010
-
Pogodin A I, Filep M J, Malakhovska T O, Sabov M Yu, Sidey V I, Kokhan
O P and Studenyak I P, 2019. The copper argyrodites Cu7−nPS6−nBrn:
crystal growth, structures and ionic conductivity. Solid State Ionics.
341: 115023. doi:10.1016/j.ssi.2019.115023
-
Hanghofer I, Brinek M, Eisbacher S L, Bitschnau B, Volck M, Hennige V,
Hanzu I, Rettenwander D and Wilkening H M R, 2019. Substitutional disorder:
structure and ion dynamics of the argyrodites Li6PS5Cl, Li6PS5Br and Li6PS5I.
Phys. Chem. Chem. Phys. 21: 8489-8507. doi:10.1039/C9CP00664H
-
Orliukas A F, Kazakevicius E, Kezionis A, Salkus T, Studenyak I P, Buchuk
R Yu, Prits I P and Panko V V, 2009. Preparation, electric conductivity
and dielectrical properties of Cu6PS5I-based superionic composites. Solid
State Ionics. 180: 183-186. doi:10.1016/j.ssi.2008.12.005
-
Studenyak I P, Izai V Yu, Studenyak V I, Kovalchuk O V, Kovalchuk T M,
Kopčanský P, Timko M, Tomašovičová N, Zavisova V, Miskuf J and Oleinikova
I V, 2017. Influence of Cu6PS5І superionic nanoparticles on the dielectric
properties of 6СВ liquid crystal. Liq. Cryst. 44: 897-903. doi:10.1080/02678292.2016.1254288
-
Šalkus T, Kazakevičius E, Banys J, Kranjčec M, Chomolyak M M, Neimet
Yu Yu and Studenyak I P, 2014. Influence of grain size effect on electrical
properties of Cu6PS5I superionic ceramics. Solid State Ionics. 262: 597-600.
doi:10.1016/j.ssi.2013.10.040
-
Studenyak I P, Kranjčec M, Izai V Yu, Chomolyak A A, Vorohta M, Matolin
V, Cserhati C and Kökényesi S, 2012. Structural and temperature-related
disordering studies of Cu6PS5I amorphous thin films. Thin Solid Films.
520: 1729-1733. doi:10.1016/j.tsf.2011.08.043
-
Studenyak I P and Kranjčec M. Disordering Effects in Superionic Conductors
with Adgyrodite Structure. Uzhhorod: Hoverla (2007).
-
Studenyak I P, Buchuk R Yu, Bendak A V, Yamkovy O O, Kazakevicius E, Salkus
T, Kezionis A and Orliukas A F, 2014. Electric conductivity studies of
composites based on (Cu1−xAgx)6PS5I superionic conductors. SPQEO. 17:
425-428. doi:10.15407/spqeo17.04.425
-
Azzam R M A and Bashara N M. Ellipsometry and Polarized Light. Amsterdam:
North-Holland Publishing Company (1977).
-
Studenyak I P, Kranjcec M, Kovacs Gy S, Panko V V, Desnica I D, Slivka
A G and Guranich P P, 1999. The effect of temperature and pressure on the
optical absorption edge in Cu6PS5X (X= Cl, Br, I) crystals. J. Phys. Chem.
Solids. 60: 1897−1904. doi:10.1016/S0022-3697(99)00220-6
-
Wemple S H and Di Domenico M, 1971. Behaviour of the dielectric constant
in covalent and ionic materials. Phys. Rev. B. 3: 1338−1352. doi:10.1103/PhysRevB.3.1338
-
Tubbs M S, 1970. A spectroscopic interpretation of crystalline ionicity.
Phys. Stat. Sol. (b). 41: K61−K64. doi:10.1002/pssb.19700410164
-
Urbach F, 1953. The long-wavelength edge of photographic sensitivity and
electronic absorption of solids. Phys. Rev. 92: 1324−1326. doi:10.1103/PhysRev.92.1324
-
Kurik M V, 1971. Urbach rule (review). Phys. Stat. Sol. (a) 8: 9−30.
doi:10.1002/pssa.2210080102
-
Sumi H and Sumi A, 1987. The Urbach−Martiensen rule revisited. J. Phys.
Soc. Jap. 56: 2211-2220. doi:10.1143/JPSJ.56.2211
-
Sumi H and Toyozawa Y, 1971. Urbach−Martiensen rule and exciton trapped
momentarily by lattice vibrations. J. Phys. Soc. Jap. 31: 342−357. doi:10.1143/JPSJ.31.342
-
Dow J D and Redfield D, 1972. Toward a unified theory of Urbach's rule
and exponential absorption edge. Phys. Rev. B. 5: 594−610. doi:10.1103/PhysRevB.5.594
-
Samuel L, Brada Y, Burger A and Roth M, 1987. Urbach rule in mixed single
crystals of ZnxCd1−xSe. Phys. Rev. B. 36: 1168−1173. doi:10.1103/PhysRevB.36.1168
-
Beaudoin M, DeVries A J G, Johnson S R, Laman H and Tiedje T, 1997. Optical
absorption edge of semi-insulating GaAs and InP at high temperatures. Appl.
Phys. Lett. 70: 3540−3542. doi:10.1063/1.119226
-
Yang Z, Homewood K P, Finney M S, Harry M A and Reeson K J, 1995. Optical
absorption study of ion beam synthesized polycrystalline semiconducting
FeSi2. J. Appl. Phys. 78: 1958−1963. doi:10.1063/1.360167
-
Cody G D, Tiedje T, Abeles B and Brooks B, Goldstein Y, 1981. Disorder
and the optical-absorption edge of hydrogenated amorphus silicon. Phys.
Rev. Lett. 47: 1480−1483. doi:10.1103/PhysRevLett.47.1480
(c) Ukrainian Journal
of Physical Optics |