Ukrainian Journal of Physical Optics 

Volume 22, Issue 4, 2021

Home page
 
 

Other articles 

in this issue
Polarized photoluminescence of Alq3 thin films obtained by the method of oblique-angle deposition

1Karbovnyk I., 1Sadovyi B., 1Turko B., 2Kukhta A. V., 1Vasil’yev V. S., 1Horyn A., 1Kulyk Y., 1Eliyashevskyi Y., 3Kostruba A., 3Savaryn V., 3Stybel V. and 4Majevska S. 

1Ivan Franko National University of Lviv, 50 Drahomanov Street, 79005 Lviv, Ukraine,
2Institute for Nuclear Problems, Belarusian State University, 11 Babruiskaya Street, 220030 Minsk, Belarus
3Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies of Lviv, 50 Pekarska Street, 79010 Lviv, Ukraine
4Lviv State University of Physical Culture, 11 Kostiushko Street, 79000 Lviv, Ukraine

Download this article

Abstract. We show that the degree of linear polarization of the photoluminescence of tris-(8-hydroxyquinoline)aluminium (Alq3) thin film can be increased by about 10 times, using a method of oblique-angle deposition. This is due to greater ordering of molecular alignment in this thin film.

Keywords: tris-(8-hydroxyquionoline) aluminium, photoluminescence, polarization, oblique-angle deposition, thin films

UDC: 535.37, 535.518, 539.2
Ukr. J. Phys. Opt. 22 209-215
doi: 10.3116/16091833/22/4/209/2021
Received: 06.09.2021

Анотація. Показано, що ступінь лінійної поляризації фотолюмінесценції тонкої плівки три-(8-гідроксихінолін)алюмінію (Alq3) можна збільшити приблизно в 10 разів, використовуючи метод осадження під деяким кутом до нормалі. Це пов’язано з більшим упорядкуванням молекулярного вирівнювання в цій тонкій плівці.

REFERENCES
  1. Singh J, 2012. Organic light emitting devices. Chapter 3. Polarized light-emission from photonic organic light-emitting devices. Croatia: In-Tech, pp. 43-64. doi:10.5772/53130
  2. Zhou L, Zhu Y-F, Zhang Q-Y, Zhou Y, Wang Y-Z, Zhou G-H, Wei H-X and Shen S, 2020. Highly linearly polarized light emission from flexible organic light-emitting devices capitalized on integrated ultrathin metal-dielectric nanograting. Opt. Express. 28: 13826-13836. doi:10.1364/OE.391624
  3. Zhang D-W, Li M and Chen C-F, 2020. Recent advances in circularly polarized electroluminescence based on organic light-emitting diodes. Chem. Soc. Rev. 49: 1331-1343. doi:10.1039/C9CS00680J
  4. Kalyani N T, Swart H and Dhoble S J. Principles and Applications of Organic Light Emitting Diodes (OLEDs). Duxford: Woodhead Publishing, 2017. doi:10.1016/B978-0-08-101213-0.00006-0
  5. Salehi A, Chen Y, Fu X, Peng C and So F, 2018. Manipulating refractive index in organic light-emitting diodes. ACS Appl. Mater. Interfaces. 10: 9595-9601. doi:10.1021/acsami.7b18514
  6. Hrudey P C P, Westra K L and Brett M J, 2006. Highly ordered organic Alq3 chiral luminescent thin films fabricated by glancing-angle deposition. Adv. Mater. 18: 224-228. doi:10.1002/adma.200501714
  7. Xie W, Pang Z, Zhao Y, Jiang F, Yuan H, Song H and Han S, 2014. Structural and optical properties of ε-phase tris(8-hydroxyquinoline) aluminum crystals prepared by using physical vapour deposition method. J. Cryst. Growth. 404: 164-167. doi:10.1016/j.jcrysgro.2014.07.031
  8. Muccini M, Loi M A, Kenevey K, Zamboni R, Masciocchi N and Sironi A, 2004. Blue luminescence of facial tris(quinolin-8-olato)aluminum(III) in solution, crystals, and thin films. Adv. Mater. 16: 851-888. doi:10.1002/adma.200305421
  9. Rajeswaran M and Blanton T N, 2005. Single-crystal structure determination of a new polymorph (ε-Alq3) of the electroluminescence OLED (organic light-emitting diode) material, tris(8-hydroxyquinoline)aluminum (Alq3). J. Chem. Cryst. 35: 71-76. doi:10.1007/s10870-005-1157-4
  10. Cui C, Park H, Kim J, Joo J and Ahn D J, 2013. Oligonucleotide assisted light-emitting Alq3 microrods: energy transfer effect with fluorescent dyes. Chem. Commun. 49: 5360-5362. doi:10.1039/c3cc41255e
  11. Park J, Kim S, Choi J, Yoo S H, Oh S, Kim D H and Park D H, 2020. Fine fabrication and optical waveguide characteristics of hexagonal tris(8-hydroxyquinoline)aluminium (III) (Alq3) crystal. Crystals. 10: 260. doi:10.3390/cryst10040260
  12. Brinkmann M, Gadret G, Muccini M, Taliani C, Masciocchi N and Sironi A, 2000. Correlation between Molecular Packing and Optical Properties in Different Crystalline Polymorphs and Amorphous Thin Films of mer-Tris(8-hydroxyquinoline)aluminum(III). J. Amer. Chem. Soc. 122: 5147-5157. doi:10.1021/ja993608k
  13. Braun M, Gmeiner J, Tzolov M, Coelle M, Meyer F D, Milius W, Hillebrecht H, Wendland O, von Schutz J U and Brutting W, 2001. A new crystalline phase of the electroluminescent material tris(8-hydroxyquinoline) aluminum exhibiting blueshifted fluorescence. J. Chem. Phys. 114: 9625-9632. doi:10.1063/1.1369157
  14. Colle M and Brutting W. Physics of Organic Semiconductors. Ed. by W. Brutting: Chapter 4. Thermal and Structural Properties of the Organic Semiconductor Alq3 and Characterization of Its Excited Electronic Triplet State. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2005, pp. 136-187. doi:10.1002/3527606637.ch4
  15. Rajeswaran M, Blanton T N, Tang C W, Lenhart W C, Switalski S C, Giesen D J, Antalek B J, Pawlik T D, Kondakov D Y, Zumbulyadis N and Young R H, 2009. Structural, thermal, and spectral characterization of the different crystalline forms of Alq3, tris(quinolin-8-olato)aluminum(III), an electroluminescent material in OLED technology. Polyhedron. 28: 835-843. doi:10.1016/j.poly.2008.12.022
  16. Wang Y Y, Ren Y, Liu J, Zhang C Q, Xia S Q and Tao X T, 2016. Crystal growth, structure and optical properties of solvated crystalline Tris(8-hydroxyquinoline)aluminium (III) (Alq3). Dyes and Pigments. 133: 9-15. doi:10.1016/j.dyepig.2016.05.018
  17. Neumann A, Lindlau J, Colombier L, Nutz M, Najmaei S, Lou J, Mohite A D, Yamaguchi H and Hogele A, 2017. Opto-valleytronic imaging of atomically thin semiconductors. Nature Nanotechnol. 12: 329-334. doi:10.1038/nnano.2016.282
  18. Okabayashi Y, Ito E, Isoshima T and Har M, 2012. Positive giant surface potential of Tris(8-hydroxyquinolinolato) Aluminum (Alq3) film evaporated onto backside of Alq3 film showing negative giant surface potential. Appl. Phys. Express. 5: 055601. doi:10.1143/APEX.5.055601
  19. Marchetti A P, Haskins T L, Young R H and Rothberg L J, 2014. Permanent polarization and charge distribution in organic light-emitting diodes (OLEDs): Insights from near-infrared charge-modulation spectroscopy of an operating OLED. J. Appl. Phys. 115: 114506. doi:10.1063/1.4867779
  20. Ito E, Washizu Y, Hayashi N, Ishii H, Matsuie N, Tsuboi K, Ouchi Y, Harima Y, Yamashita K and Seki K, 2002. Spontaneous buildup of giant surface potential by vacuum deposition of Alq3 and its removal by visible light irradiation. J. Appl. Phys. 92: 7306-7310. doi:10.1063/1.1518759
  21. Kajimoto N, Manaka T and Iwamotoa M, 2006. Decay process of a large surface potential of Alq3 films by heating. J. Appl. Phys. 100: 053707. doi:10.1063/1.2338137
  22. Sugi K, Ishii H, Kimura Y, Niwano M, Ito E, Washizu Y, Hayashi N, Ouchi Y and Seki K, 2004. Characterization of light-erasable giant surface potential built up in evaporated Alq3 thin films. Thin Solid Films. 464-465: 412-415. doi:10.1016/j.tsf.2004.06.035
  23. Yoshizaki K, Manaka T and Iwamoto M, 2005. Large surface potential of Alq3 film and its decay. J. Appl. Phys. 97: 023703. doi:10.1063/1.1835543
  24. Noguchi Y, Sato N, Tanaka Y, Nakayama Y and Ishii H, 2008. Threshold voltage shift and formation of charge traps induced by light irradiation during the fabrication of organic light-emitting diodes. Appl. Phys. Lett. 92: 203306. doi:10.1063/1.2936084
  25. Isoshima T, Ito H, Ito E, Okabayashi Y and Hara M, 2009. Long-term relaxation of molecular orientation in vacuum-deposited ALQ3 thin films. Mol. Cryst. Liq. Cryst. 505: 59-63. doi:15421400902942128
  26. Barranco A, Borras A, Gonzalez-Elipe A R and Palmero A, 2016. Perspectives on oblique angle deposition of thin films: from fundamentals to devices. Progr. Mater. Sci. 76: 59-153. doi:10.1016/j.pmatsci.2015.06.003
(c) Ukrainian Journal of Physical Optics