Home
page
Other articles
in this issue |
Polarized photoluminescence
of Alq3 thin films obtained by the method of oblique-angle deposition
1Karbovnyk I., 1Sadovyi B.,
1Turko B.,
2Kukhta A. V.,
1Vasil’yev V. S.,
1Horyn A.,
1Kulyk Y.,
1Eliyashevskyi Y.,
3Kostruba A.,
3Savaryn V.,
3Stybel V.
and
4Majevska S.
1Ivan Franko National University of Lviv, 50
Drahomanov Street, 79005 Lviv, Ukraine,
2Institute for Nuclear Problems, Belarusian
State University, 11 Babruiskaya Street, 220030 Minsk, Belarus
3Stepan Gzhytskyi National University of Veterinary
Medicine and Biotechnologies of Lviv, 50 Pekarska Street, 79010 Lviv, Ukraine
4Lviv State University of Physical Culture,
11 Kostiushko Street, 79000 Lviv, Ukraine
Download this
article
Abstract. We show that the degree of linear polarization of the
photoluminescence of tris-(8-hydroxyquinoline)aluminium (Alq3) thin film
can be increased by about 10 times, using a method of oblique-angle deposition.
This is due to greater ordering of molecular alignment in this thin film.
Keywords: tris-(8-hydroxyquionoline)aluminium,
photoluminescence, polarization, oblique-angle deposition, thin films
UDC: 535.37, 535.518, 539.2
Ukr. J. Phys. Opt. 22 209-215
doi: 10.3116/16091833/22/4/209/2021
Received: 06.09.2021
Анотація. Показано, що ступінь лінійної
поляризації фотолюмінесценції тонкої
плівки три-(8-гідроксихінолін)алюмінію
(Alq3) можна збільшити приблизно в 10 разів,
використовуючи метод осадження під деяким
кутом до нормалі. Це пов’язано з більшим
упорядкуванням молекулярного вирівнювання
в цій тонкій плівці.
Ключові слова: тріс(8-гідроксихінолінат)алюміній,
фотолюмінесценція, поляризація, косокутове
осадження, тонкі плівки |
|
REFERENCES
-
Singh J, 2012. Organic light emitting devices. Chapter 3. Polarized light-emission
from photonic organic light-emitting devices. Croatia: In-Tech, pp. 43-64.
doi:10.5772/53130
-
Zhou L, Zhu Y-F, Zhang Q-Y, Zhou Y, Wang Y-Z, Zhou G-H, Wei H-X and Shen
S, 2020. Highly linearly polarized light emission from flexible organic
light-emitting devices capitalized on integrated ultrathin metal-dielectric
nanograting. Opt. Express. 28: 13826-13836. doi:10.1364/OE.391624
-
Zhang D-W, Li M and Chen C-F, 2020. Recent advances in circularly polarized
electroluminescence based on organic light-emitting diodes. Chem. Soc.
Rev. 49: 1331-1343. doi:10.1039/C9CS00680J
-
Kalyani N T, Swart H and Dhoble S J. Principles and Applications of Organic
Light Emitting Diodes (OLEDs). Duxford: Woodhead Publishing, 2017. doi:10.1016/B978-0-08-101213-0.00006-0
-
Salehi A, Chen Y, Fu X, Peng C and So F, 2018. Manipulating refractive
index in organic light-emitting diodes. ACS Appl. Mater. Interfaces. 10:
9595-9601. doi:10.1021/acsami.7b18514
-
Hrudey P C P, Westra K L and Brett M J, 2006. Highly ordered organic Alq3
chiral luminescent thin films fabricated by glancing-angle deposition.
Adv. Mater. 18: 224-228. doi:10.1002/adma.200501714
-
Xie W, Pang Z, Zhao Y, Jiang F, Yuan H, Song H and Han S, 2014. Structural
and optical properties of ε-phase tris(8-hydroxyquinoline) aluminum crystals
prepared by using physical vapour deposition method. J. Cryst. Growth.
404: 164-167. doi:10.1016/j.jcrysgro.2014.07.031
-
Muccini M, Loi M A, Kenevey K, Zamboni R, Masciocchi N and Sironi A, 2004.
Blue luminescence of facial tris(quinolin-8-olato)aluminum(III) in solution,
crystals, and thin films. Adv. Mater. 16: 851-888. doi:10.1002/adma.200305421
-
Rajeswaran M and Blanton T N, 2005. Single-crystal structure determination
of a new polymorph (ε-Alq3) of the electroluminescence OLED (organic light-emitting
diode) material, tris(8-hydroxyquinoline)aluminum (Alq3). J. Chem. Cryst.
35: 71-76. doi:10.1007/s10870-005-1157-4
-
Cui C, Park H, Kim J, Joo J and Ahn D J, 2013. Oligonucleotide assisted
light-emitting Alq3 microrods: energy transfer effect with fluorescent
dyes. Chem. Commun. 49: 5360-5362. doi:10.1039/c3cc41255e
-
Park J, Kim S, Choi J, Yoo S H, Oh S, Kim D H and Park D H, 2020. Fine
fabrication and optical waveguide characteristics of hexagonal tris(8-hydroxyquinoline)aluminium
(III) (Alq3) crystal. Crystals. 10: 260. doi:10.3390/cryst10040260
-
Brinkmann M, Gadret G, Muccini M, Taliani C, Masciocchi N and Sironi A,
2000. Correlation between Molecular Packing and Optical Properties in Different
Crystalline Polymorphs and Amorphous Thin Films of mer-Tris(8-hydroxyquinoline)aluminum(III).
J. Amer. Chem. Soc. 122: 5147-5157. doi:10.1021/ja993608k
-
Braun M, Gmeiner J, Tzolov M, Coelle M, Meyer F D, Milius W, Hillebrecht
H, Wendland O, von Schutz J U and Brutting W, 2001. A new crystalline phase
of the electroluminescent material tris(8-hydroxyquinoline) aluminum exhibiting
blueshifted fluorescence. J. Chem. Phys. 114: 9625-9632. doi:10.1063/1.1369157
-
Colle M and Brutting W. Physics of Organic Semiconductors. Ed. by W. Brutting:
Chapter 4. Thermal and Structural Properties of the Organic Semiconductor
Alq3 and Characterization of Its Excited Electronic Triplet State. Weinheim:
Wiley-VCH Verlag GmbH & Co. KGaA, 2005, pp. 136-187. doi:10.1002/3527606637.ch4
-
Rajeswaran M, Blanton T N, Tang C W, Lenhart W C, Switalski S C, Giesen
D J, Antalek B J, Pawlik T D, Kondakov D Y, Zumbulyadis N and Young R H,
2009. Structural, thermal, and spectral characterization of the different
crystalline forms of Alq3, tris(quinolin-8-olato)aluminum(III), an electroluminescent
material in OLED technology. Polyhedron. 28: 835-843. doi:10.1016/j.poly.2008.12.022
-
Wang Y Y, Ren Y, Liu J, Zhang C Q, Xia S Q and Tao X T, 2016. Crystal growth,
structure and optical properties of solvated crystalline Tris(8-hydroxyquinoline)aluminium
(III) (Alq3). Dyes and Pigments. 133: 9-15. doi:10.1016/j.dyepig.2016.05.018
-
Neumann A, Lindlau J, Colombier L, Nutz M, Najmaei S, Lou J, Mohite A D,
Yamaguchi H and Hogele A, 2017. Opto-valleytronic imaging of atomically
thin semiconductors. Nature Nanotechnol. 12: 329-334. doi:10.1038/nnano.2016.282
-
Okabayashi Y, Ito E, Isoshima T and Har M, 2012. Positive giant surface
potential of Tris(8-hydroxyquinolinolato) Aluminum (Alq3) film evaporated
onto backside of Alq3 film showing negative giant surface potential. Appl.
Phys. Express. 5: 055601. doi:10.1143/APEX.5.055601
-
Marchetti A P, Haskins T L, Young R H and Rothberg L J, 2014. Permanent
polarization and charge distribution in organic light-emitting diodes (OLEDs):
Insights from near-infrared charge-modulation spectroscopy of an operating
OLED. J. Appl. Phys. 115: 114506. doi:10.1063/1.4867779
-
Ito E, Washizu Y, Hayashi N, Ishii H, Matsuie N, Tsuboi K, Ouchi Y, Harima
Y, Yamashita K and Seki K, 2002. Spontaneous buildup of giant surface potential
by vacuum deposition of Alq3 and its removal by visible light irradiation.
J. Appl. Phys. 92: 7306-7310. doi:10.1063/1.1518759
-
Kajimoto N, Manaka T and Iwamotoa M, 2006. Decay process of a large surface
potential of Alq3 films by heating. J. Appl. Phys. 100: 053707. doi:10.1063/1.2338137
-
Sugi K, Ishii H, Kimura Y, Niwano M, Ito E, Washizu Y, Hayashi N, Ouchi
Y and Seki K, 2004. Characterization of light-erasable giant surface potential
built up in evaporated Alq3 thin films. Thin Solid Films. 464-465: 412-415.
doi:10.1016/j.tsf.2004.06.035
-
Yoshizaki K, Manaka T and Iwamoto M, 2005. Large surface potential of Alq3
film and its decay. J. Appl. Phys. 97: 023703. doi:10.1063/1.1835543
-
Noguchi Y, Sato N, Tanaka Y, Nakayama Y and Ishii H, 2008. Threshold voltage
shift and formation of charge traps induced by light irradiation during
the fabrication of organic light-emitting diodes. Appl. Phys. Lett. 92:
203306. doi:10.1063/1.2936084
-
Isoshima T, Ito H, Ito E, Okabayashi Y and Hara M, 2009. Long-term relaxation
of molecular orientation in vacuum-deposited ALQ3 thin films. Mol. Cryst.
Liq. Cryst. 505: 59-63. doi:15421400902942128
-
Barranco A, Borras A, Gonzalez-Elipe A R and Palmero A, 2016. Perspectives
on oblique angle deposition of thin films: from fundamentals to devices.
Progr. Mater. Sci. 76: 59-153. doi:10.1016/j.pmatsci.2015.06.003
(c) Ukrainian Journal
of Physical Optics |