Ukrainian Journal of Physical Optics 

Volume 22, Issue 4, 2021

Home page
 
 

Other articles 

in this issue
Implementation of optical quantum gate for polarization-encoded qubits via acousto-optic diffraction by shear acoustic waves in vitreous media

Krupych O., Martynyuk-Lototska I., Orykhivskyi I., Adamenko D., Kostyrko M. and Vlokh R.

O. G. Vlokh Institute of Physical Optics, 23 Dragomanov Street, 79005 Lviv, Ukraine, vlokh@ifo.lviv.ua 
 

Download this article

Abstract. We demonstrate experimentally that acousto-optic diffraction by a shear acoustic wave propagating in fused silica can transform linear or circular polarization states into their orthogonal counterparts. It is also shown that a corresponding acousto-optic cell with a shear acoustic wave propagating in a vitreous medium can be used as a NOT or CNOT gate. The advantage of our method is a possibility for spatial manipulation by qubits via acousto-optic diffraction under condition of changing frequency of the acoustic wave.

Keywords: quantum gates, NOT gates, CNOT gates, acousto-optics, fused silica 

UDC: 535.4+534-8+004.04
Ukr. J. Phys. Opt. 22 198-208
doi: 10.3116/16091833/22/4/198/2021
Received: 09.09.2021

Анотація. Експериментально продемонстровано, що акустооптична дифракція на зсувній акустичній хвилі, яка поширюється в плавленому кварці, може перетворити лінійні або кругові поляризаційні стани на їхні ортогональні аналоги. Також показано, що відповідну акустооптичну комірку з зсувною акустичною хвилею, яка поширюється у склоподібному середовищі, можна використовувати як квантові вентилі NOT або CNOT. Перевагою нашого методу є можливість просторового керування кубітами за допомогою акустооптичної дифракції за умови зміни частоти акустичної хвилі.

Ключові слова: квантові вентилі, вентилі НЕ, вентилі CNOT, акустооптика, плавлений кварц

REFERENCES
  1. Schumacher B, 1995. Quantum coding. Phys. Rev. A. 51: 2738–2747. doi:10.1103/PhysRevA.51.2738 
  2. Azzam R M A and Bashara N M. Ellipsometry and Polarized Light. Amsterdam. New York, Oxford: North Holland Publ. Company, 1977.
  3. Barenco A, Bennett C H, Cleve R, DiVincenzo D P, Margolus N, Shor P, Sleator T, Smolin J A and Weinfurter H, 1995. Elementary gates for quantum computation. Phys. Rev. A. 52: 3457–3467. doi:10.1103/PhysRevA.52.3457 
  4. Chuang I L, Sherwood M H, Yannoni C S, Nuclear magnetic resonance quantum computing method with improved solvents. United States Patent No. US 6,218,832 B1, Apr. 17, 2001.
  5. Guanru Feng, Guofu Xu and Guilu Long, 2013. Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110: 190501. doi:10.1103/PhysRevLett.110.190501 
  6. Cirac J I and Zoller P, 1995. Quantum computation with cold traped ions. Phys. Rev. Lett. 74: 4091–4094. doi:10.1103/physrevlett.74.4091 
  7. Monroe C, Meekhof D M, King B E, Itano W M, and Wineland D J, 1995. Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75: 4714–4717. doi:10.1103/physrevlett.75.4714 
  8. Schmidt-Kaler F, Haffner H, Riebe M, Gulde S, Lancaster G P T, Deuschle T, Becher C, Roos C F, Eschner J and Blatt R, 2003. Realization of the Cirac–Zoller controlled-NOT quantum gate. Nature. 422: 408–411. doi:10.1038/nature01494 
  9. Moseley F, Halamek J, Kramer F, Poghossian A, Schoningcd M J and Katz E, 2014. An enzyme-based reversible CNOT logic gate realized in a flow system. Analyst. 139: 1839–1842. doi:10.1039/C4AN00133H 
  10. Bækkegaard T, Kristensen L B, Loft N J S, Andersen C K, Petrosyan D and Zinner N T, 2019. Realization of efficient quantum gates with a superconducting qubit-qutrit circuit. Sci. Rep. 9: 13389. doi:10.1038/s41598-019-49657-1
  11. Wendin G, 2017. Quantum information processing with superconducting circuits: a review. Rep. Prog. Phys. 80: 106001. doi:10.1088/1361-6633/aa7e1a
  12. D’Ambrosio V, Carvacho G, Graffitti F, Vitelli C, Piccirillo B, Marrucci L and Sciarrino F, 2016. Entangled vector vortex beams. Phys. Rev. A. 94: 030304(R) doi:10.1103/physreva.94.030304
  13. Skab I, Kostyrko M and Vlokh R, 2020. Single-photon entanglement at acousto-optic (acousto-gyration) diffraction. Ukr. J. Phys. Opt. 21: 152–158. doi: doi:10.3116/16091833/21/3/152/2020 
  14. Biswas K K and Shihan S, 2012. Design and realization of a quantum controlled NOT gate using optical implementation. Int. J. Adv. Res. & Technol. 1: 1–9.
  15. Langford N K, Weinhold T J, Prevedel R, Resch K J, Gilchrist A, O’Brien J L, Pryde G J and White A G, 2005. Demonstration of a simple entangling optical gate and its use in Bell-state analysis. Phys. Rev. Lett. 95: 210504. doi:10.1103/PhysRevLett.95.210504 
  16. Okamoto R, Hofmann H F, Takeuchi S and Sasaki K, 2005. Demonstration of an optical quantum controlled-NOT gate without path interference. Phys. Rev. Lett. 95: 210506. doi:10.1103/PhysRevLett.95.210506 
  17. Politi A, Martin J C, Rarity J G, Siyuan Yu and O’Brien J L, 2008. Silica-on-silicon waveguide quantum circuits. Science. 320: 646–649.  doi:10.1126/science.1155441 
  18. Politi A, Matthews J C and O’brien J L, 2009. Shor’s quantum factoring algorithm on a photonic chip. Science. 325: 1221–1221. doi:10.1126/science.1173731 
  19. Matthews J C, Politi A, Stefanov A and O’brien J L, 2009. Manipulation of multiphoton entanglement in waveguide quantum circuits. Nature Photon. 3: 346–350. doi:10.1038/nphoton.2009.93
  20. Sansoni L, Sciarrino F, Vallone G, Mataloni P, Crespi A, Ramponi R and Osellame R, 2010. Polarization entangled state measurement on a chip. Phys. Rev. Lett. 105: 200503. doi:10.1103/PhysRevLett.105.200503 
  21. Crespi A, Mataloni P, Ramponi R, Sansoni L, Sciarrino F, Vallone G and Osellame R. Integrated optics logic gate for polarization-encoded quantum qubits and a method for the production and use thereof. U.S. Patent Application No. 14/115, 622, 2014.
  22. Krupych O M, Martynyuk-Lototska I Y, Kostyrko M E, Vasylkiv Yu V and Vlokh R O. Method of implementing optical quantum logic element for control of qubits with polarization coding. Application for the Invention of Ukraine, 2021, a202103404.
  23. Magdich L N and Molchanov V Ya. Acoustooptic Devices and Their Applications. New York, London, Paris, Montreux, Tokyo, Melbourne: Gordon and Breach Science Publ., 1989.
(c) Ukrainian Journal of Physical Optics