Home
page
Other articles
in this issue |
Implementation of
optical quantum gate for polarization-encoded qubits via acousto-optic
diffraction by shear acoustic waves in vitreous media
Krupych O., Martynyuk-Lototska I., Orykhivskyi I., Adamenko D., Kostyrko
M. and Vlokh R.
O. G. Vlokh Institute of Physical Optics, 23 Dragomanov
Street, 79005 Lviv, Ukraine, vlokh@ifo.lviv.ua
Download this
article
Abstract. We demonstrate experimentally that acousto-optic diffraction
by a shear acoustic wave propagating in fused silica can transform linear
or circular polarization states into their orthogonal counterparts. It
is also shown that a corresponding acousto-optic cell with a shear acoustic
wave propagating in a vitreous medium can be used as a NOT or CNOT gate.
The advantage of our method is a possibility for spatial manipulation by
qubits via acousto-optic diffraction under condition of changing frequency
of the acoustic wave.
Keywords: quantum gates, NOT gates, CNOT gates,
acousto-optics, fused silica
UDC: 535.4+534-8+004.04
Ukr. J. Phys. Opt. 22 198-208
doi: 10.3116/16091833/22/4/198/2021
Received: 09.09.2021
Анотація. Експериментально продемонстровано,
що акустооптична дифракція на зсувній
акустичній хвилі, яка поширюється в плавленому
кварці, може перетворити лінійні або кругові
поляризаційні стани на їхні ортогональні
аналоги. Також показано, що відповідну
акустооптичну комірку з зсувною акустичною
хвилею, яка поширюється у склоподібному
середовищі, можна використовувати як квантові
вентилі NOT або CNOT. Перевагою нашого методу
є можливість просторового керування кубітами
за допомогою акустооптичної дифракції
за умови зміни частоти акустичної хвилі.
Ключові слова: квантові вентилі, вентилі
НЕ, вентилі CNOT, акустооптика, плавлений
кварц |
|
REFERENCES
-
Schumacher B, 1995. Quantum coding. Phys. Rev. A. 51: 2738–2747. doi:10.1103/PhysRevA.51.2738
-
Azzam R M A and Bashara N M. Ellipsometry and Polarized Light. Amsterdam.
New York, Oxford: North Holland Publ. Company, 1977.
-
Barenco A, Bennett C H, Cleve R, DiVincenzo D P, Margolus N, Shor P, Sleator
T, Smolin J A and Weinfurter H, 1995. Elementary gates for quantum computation.
Phys. Rev. A. 52: 3457–3467. doi:10.1103/PhysRevA.52.3457
-
Chuang I L, Sherwood M H, Yannoni C S, Nuclear magnetic resonance quantum
computing method with improved solvents. United States Patent No. US 6,218,832
B1, Apr. 17, 2001.
-
Guanru Feng, Guofu Xu and Guilu Long, 2013. Experimental realization of
nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110: 190501.
doi:10.1103/PhysRevLett.110.190501
-
Cirac J I and Zoller P, 1995. Quantum computation with cold traped ions.
Phys. Rev. Lett. 74: 4091–4094. doi:10.1103/physrevlett.74.4091
-
Monroe C, Meekhof D M, King B E, Itano W M, and Wineland D J, 1995. Demonstration
of a fundamental quantum logic gate. Phys. Rev. Lett. 75: 4714–4717.
doi:10.1103/physrevlett.75.4714
-
Schmidt-Kaler F, Haffner H, Riebe M, Gulde S, Lancaster G P T, Deuschle
T, Becher C, Roos C F, Eschner J and Blatt R, 2003. Realization of the
Cirac–Zoller controlled-NOT quantum gate. Nature. 422: 408–411. doi:10.1038/nature01494
-
Moseley F, Halamek J, Kramer F, Poghossian A, Schoningcd M J and Katz E,
2014. An enzyme-based reversible CNOT logic gate realized in a flow system.
Analyst. 139: 1839–1842. doi:10.1039/C4AN00133H
-
Bækkegaard T, Kristensen L B, Loft N J S, Andersen C K, Petrosyan D and
Zinner N T, 2019. Realization of efficient quantum gates with a superconducting
qubit-qutrit circuit. Sci. Rep. 9: 13389. doi:10.1038/s41598-019-49657-1
-
Wendin G, 2017. Quantum information processing with superconducting circuits:
a review. Rep. Prog. Phys. 80: 106001. doi:10.1088/1361-6633/aa7e1a
-
D’Ambrosio V, Carvacho G, Graffitti F, Vitelli C, Piccirillo B, Marrucci
L and Sciarrino F, 2016. Entangled vector vortex beams. Phys. Rev. A. 94:
030304(R) doi:10.1103/physreva.94.030304
-
Skab I, Kostyrko M and Vlokh R, 2020. Single-photon entanglement at acousto-optic
(acousto-gyration) diffraction. Ukr. J. Phys. Opt. 21: 152–158. doi:
doi:10.3116/16091833/21/3/152/2020
-
Biswas K K and Shihan S, 2012. Design and realization of a quantum controlled
NOT gate using optical implementation. Int. J. Adv. Res. & Technol.
1: 1–9.
-
Langford N K, Weinhold T J, Prevedel R, Resch K J, Gilchrist A, O’Brien
J L, Pryde G J and White A G, 2005. Demonstration of a simple entangling
optical gate and its use in Bell-state analysis. Phys. Rev. Lett. 95: 210504.
doi:10.1103/PhysRevLett.95.210504
-
Okamoto R, Hofmann H F, Takeuchi S and Sasaki K, 2005. Demonstration of
an optical quantum controlled-NOT gate without path interference. Phys.
Rev. Lett. 95: 210506. doi:10.1103/PhysRevLett.95.210506
-
Politi A, Martin J C, Rarity J G, Siyuan Yu and O’Brien J L, 2008. Silica-on-silicon
waveguide quantum circuits. Science. 320: 646–649. doi:10.1126/science.1155441
-
Politi A, Matthews J C and O’brien J L, 2009. Shor’s quantum factoring
algorithm on a photonic chip. Science. 325: 1221–1221. doi:10.1126/science.1173731
-
Matthews J C, Politi A, Stefanov A and O’brien J L, 2009. Manipulation
of multiphoton entanglement in waveguide quantum circuits. Nature Photon.
3: 346–350. doi:10.1038/nphoton.2009.93
-
Sansoni L, Sciarrino F, Vallone G, Mataloni P, Crespi A, Ramponi R and
Osellame R, 2010. Polarization entangled state measurement on a chip. Phys.
Rev. Lett. 105: 200503. doi:10.1103/PhysRevLett.105.200503
-
Crespi A, Mataloni P, Ramponi R, Sansoni L, Sciarrino F, Vallone G and
Osellame R. Integrated optics logic gate for polarization-encoded quantum
qubits and a method for the production and use thereof. U.S. Patent Application
No. 14/115, 622, 2014.
-
Krupych O M, Martynyuk-Lototska I Y, Kostyrko M E, Vasylkiv Yu V and Vlokh
R O. Method of implementing optical quantum logic element for control of
qubits with polarization coding. Application for the Invention of Ukraine,
2021, a202103404.
-
Magdich L N and Molchanov V Ya. Acoustooptic Devices and Their Applications.
New York, London, Paris, Montreux, Tokyo, Melbourne: Gordon and Breach
Science Publ., 1989.
(c) Ukrainian Journal
of Physical Optics |