Home
page
Other articles
in this issue |
Vibrational spectra
of quercetin and their interpretation with quantum-mechanical density-functional
method
1Kutovyy S., 1Savchuk
R., 1Bashmakova N., 1Stanovyi
O. and 2Palchykivska L.
1Faculty of Physics, Taras Shevchenko National
University of Kyiv, 64/13 Volodymyrska Street, 01601 Kyiv,
Ukraine, sangulaire@gmail.com
2Department of Molecular and Quantum Biophysics,
Institute of Molecular Biology and Genetics, National Academy
of Sciences of Ukraine, 150 Academician Zabolotnyi Street,
03143 Kyiv, Ukraine.
Download this
article
Abstract. Experimental vibrational (Raman and IR-absorption)
spectra are obtained for microcrystalline powder of quercetin in the spectral
range of 400−1800 cm−1 at the room temperature. Optimized
geometries of two stable isomers of quercetin molecule are calculated with
a density-functional method at the level CAM B3LYP/6-311++G(d,p). The isomers
have an almost planar frame structure and differ by mirror orientations
of one of the rings with respect to the other rings. Vibrational spectra
of the isomers are calculated in harmonic approximation at the same level
of theory. The scaling factors determined experimentally for each of the
two isomers have been used when comparing the calculated and experimental
data. The vibrational spectra are interpreted in the whole frequency range
under test. Good correlation of the experimental and calculated vibrational
spectra is obtained.
Keywords: quercetin, Raman spectra, infrared
absorption spectra, density-functional method
UDC: 535.37; 535.58
Ukr. J. Phys. Opt. 22 181-197
doi: 10.3116/16091833/22/4/181/2021
Received: 05.07.2021
Анотація. Для мікрокристалічного
порошку кверцетину одержано експериментальні
коливні спектри (комбінаційне розсіяння
та ІЧ-поглинання) в спектральному діапазоні
400−1800 см−1 за кімнатної температури.
Оптимізовані геометрії двох стабільних
ізомерів молекули кверцетину обчислено
за методом функціоналу щільності на рівні
CAM B3LYP/6-311++G(d,p). Вищезазначені ізомери мають
майже площинну структуру каркасу і відрізняються
дзеркальною орієнтацією одного з кілець
щодо інших. На цьому ж рівні теорії в гармонічному
наближенні обчислено коливні спектри ізомерів.
Коефіцієнти масштабування, визначені експериментально
для кожного з двох ізомерів, було використано
в порівнянні розрахункових та експериментальних
даних. Коливні спектри проінтерпретовано
для всього дослідженого діапазону частот.
Одержано високу кореляцію між експериментальними
та розрахунковими коливними спектрами.
Ключові слова: кверцетин, спектри КРС,
спектри інфрачервоного поглинання, метод
функціональної щільності |
|
REFERENCES
-
Davis J M, Murphy E A and Carmichael M D, 2009. Effects of the dietary
flavonoid quercetin upon performance and health. Curr. Sports Med. Rep.
8: 206-213. doi:10.1249/JSR.0b013e3181ae8959
-
Trouillas P, Marsal P, Siri D, Lazzaroni R and Duroux J-L, 2006. A DFT
study of the reactivity of OH groups in quercetin and taxifolin antioxidants:
the specificity of the 3-OH site. Food Chem. 97: 679-688. doi:10.1016/j.foodchem.2005.05.042
-
Bentz A B, 2009. A review of quercetin: chemistry, antioxidant properties,
and bioavailability. J. Young Investig. 19.
-
Cadenas E and Packer L. Handbook of Antioxidants. New York: Marcel Dekker,
2002.
-
David A V A, Arulmoli R and Parasuraman S, 2016. Overviews of biological
importance of quercetin: a bioactive flavonoid. Pharmacogn. Rev. 10: 84-89.
doi:10.4103/0973-7847.194044
-
Drugbank. https://www.drugbank.ca/drugs/DB04216.
-
Abarikwu S O, Pant A B and Farombi E O, 2012. Dietary antioxidant, quercetin,
protects sertoli-germ cell coculture from atrazine-induced oxidative damage.
J. Biochem. Mol. Toxicol. 26: 477-485. doi:10.1002/jbt.21449
-
Aguirre L, Arias N, Macarulla M T, Gracia A and Portillo M P, 2011. Beneficial
effects of quercetin on obesity and diabetes. Open Nutraceuticals J. 4:
189-198. doi:10.2174/1876396001104010189
-
Nathiya S, Durga M and Devasena T, 2014. Quercetin, encapsulated quercetin
and its application - a review. Int. J. Pharm. & Pharm. Sci. 10: 20−26.
-
Pham-Huy L A, He H and Pham-Huy C, 2008. Free radicals, antioxidants in
disease and health. Int. J. Biomed. Sci. 4: 89−96.
-
Porcu E P, Cossu M, Rassu G, Giunchedi P, Cerri G, Pourová J, Najmanová
I, Migkos T, Pilařová V, Nováková L, Mladěnka P and Gavini E, 2018.
Aqueous injection of quercetin: an approach for confirmation of its direct
in vivo cardiovascular effects. Int. J. Pharm. 541: 224−233. doi:10.1016/j.ijpharm.2018.02.036
-
Ramadan M F and Asker M M S, 2009. Antimicrobical and antivirial impact
of novel quercetinen riched lecithin. J. Food Biochem. 33: 557−571. doi:10.1111/j.1745-4514.2009.00237.x
-
Rauf A, Imran M, Khan I A, ur-Rehman M, Gilani S A, Mehmood Z and Mubarak
M S, 2018. Anticancer potential of quercetin: a comprehensive review. Phytother.
Res. 32: 2109−2130. doi:10.1002/ptr.6155
-
Cai X, Fang Z, Dou J, Yu A and Zhai G, 2013. Bioavailability of quercetin:
problems and promises. Curr. Med. Chem. 20: 2572−2582. doi:10.2174/09298673113209990120
-
Gao S, Sofic E and Prior R L, 1997. Antioxidant and pro-oxidant behavior
of flavonoids: structure-activity relationships. Free Radic. Biol. Med.
22: 749−760. doi:10.1016/S0891-5849(96)00351-6
-
Jovanovic S V, Steenken S, Hara Y and Simic M G, 1996. Reduction potentials
of flavonoid and model phenoxyl radicals. Which ring in flavonoids is responsible
for antioxidant activity. J. Chem. Soc. Trans. 2: 2497−2504. doi:10.1039/p29960002497
-
Van Acker S A B E, de Groot M J, van den Ber D-J, Tromp M N J L, Donné-Op
den Kelder G, van der Vijgh W J F and Bast A, 1986. A quantum chemical
explanation of the antioxidant activity of flavonoids. Chem. Res. Toxicol.
9: 1305-1312. doi:10.1021/tx9600964
-
Van Acker S A B E, van der Berg D J, Tromp M N J L, Griffen D H, van Bennekom
W P, van der Vijgh W J F and Bast A, 1996. Structural aspects of antioxidant
activity of flavonoids. Free Radical Biol. Med. 20: 331−342. doi:10.1016/0891-5849(95)02047-0
-
Van Acker S A, de Groot M J, van den Berg D J, Tromp M N, Donné-Op den
van Acker S A B E, Bast A and van der Vijgh W J F, 1998. The structural
aspects in relation to antioxidant activity of flavonoids. Antioxid. Health
Dis., pp. 221−251.
-
Karmakar A and Singh B, 2019. Spectroscopic analysis and theoretical investigation
of hydrogen bonding interaction of quercetin with different acceptor molecules.
J. Mol. Struct. 1180: 698−707. doi:10.1016/j.molstruc.2018.12.034
-
Cornard J P, Merlin J C, Boudet A C and Vrielynck L, 1997. Structural study
of quercetin by vibrational and electronic spectroscopies combined with
semiempirical calculations. Biospectrosc. 3: 183-193. doi:10.1002/(SICI)1520-6343(1997)3:3<183::AID-BSPY2>3.0.CO;2-7
-
Jurasekova Z, Garcia-Ramos J V, Domingo C and Sanchez-Cortes S, 2006. Surface-enhanced
Raman scattering of flavonoids. J. Raman Spectrosc. 37: 1239-1241. doi:10.1002/jrs.1634
-
Jurasekova Z, Domingo C, Garcia-Ramos J V and Sanchez-Cortes S, 2014. Effect
of pH on the chemical modification of quercetin and structurally related
flavonoids characterized by optical (UV-visible and Raman) spectroscopy.
Phys. Chem. & Chem. Phys. 16: 12802−12811. doi:10.1039/C4CP00864B
-
Dimitrić Marković J M, Marković Z S, Milenković D and Jeremić S, 2011.
Application of comparative vibrational spectroscopic and mechanistic studies
in analysis of fisetin structure. Spectrochim. Acta. A. 83: 120−129.
doi:10.1016/j.saa.2011.08.001
-
Numata Y and Tanaka H, 2011. Quantitative analysis of quercetin using Raman
spectroscopy. Food Chem. 126: 751-755. doi:10.1016/j.foodchem.2010.11.059
-
Borghettia G S, Carinia J P, Honoratob S B, Ayalab A P, Moreirac J C F
and Bassania V L, 2012. Physicochemical properties and thermal stability
of quercetin hydrates in the solid state. Thermochim. Acta. 539: 109-114.
doi:10.1016/j.tca.2012.04.015
-
Raza A, Xu X, Xia L, Xia C, Tang J and Ouyang Z, 2016. Quercetin-iron complex:
synthesis, characterization, antioxidant, DNA binding, DNA cleavage, and
antibacterial activity studies. J. Fluoresc. 26: 2023−2031. doi:10.1007/s10895-016-1896-y
-
Pompeu D R, Larondelle Y, Rogez H, Abbas O, Fernández Pierna J A and Baeten
V, 2018. Characterization and discrimination of phenolic compounds using
Fourier transform Raman spectroscopy and chemometric tools. Biotechnol.
Agron. Soc. Environ. 22: 13−28.
-
Hanuza J, Godlewska P, Kucharska E, Ptak M, Kopacz M, Mączka M, Hermanowicz
K and Macalik L, 2017. Molecular structure and vibrational spectra of quercetin
and quercetin-5'-sulfonic acid. Vibr. Spectr. 88: 94-105. doi:10.1016/j.vibspec.2016.11.007
-
Teslova T, Corredor C, Livingstone R, Spataru T, Birke R L, Lombardi J
R, Canamares M V and Leona M, 2007. Raman and surface-enhanced Raman spectra
of flavone and several hydroxyl derivatives. J. Raman Spectrosc. 38: 802-818.
doi:10.1002/jrs.1695
-
Kanakis C D, Tarantilis P A, Polissiou M G, Diamantoglou S and Tajmir-Riahi
H A, 2005. DNA interaction with naturally occurring antioxidant flavonoids
quercetin, kaempferol, and delphinidin. J. Biomolec. Struct. Dynam. 22:
719−724. doi:10.1080/07391102.2005.10507038
-
Rossi M, Rickles L F and Halpin W A, 1986. The crystal and molecular structure
of quercetin: A biologically active and naturally occurring flavonoid.
Bioorg. Chem. 14: 55-69. doi:10.1016/0045-2068(86)90018-0
-
Jin G Z, Yamagata Y and Tomita K I, 1990. Structure of quercetin dihydrate.
Acta Cryst. C. 46: 310-313. doi:10.1107/S0108270189006682
-
Domagała S, Munshi P, Ahmed M, Guillot B and Jelsch C, 2010. Structural
analysis and multipole modelling of quercetin monohydrate - a quantitative
and comparative study. Acta Cryst. B. 67: 63-78. doi:10.1107/S0108768110041996
-
Filip X, Grosu I-G, Miclăuş M and Filip C, 2013. NMR crystallography
methods to probe complex hydrogen bonding networks: application to structure
elucidation of anhydrous quercetin. Cryst. Eng. Comm. 15: 4131−4142.
doi:10.1039/c3ce40299a
-
Filip X and Filip C, 2015. Can the conformation of flexible hydroxyl groups
be constrained by simple NMR crystallography approaches? The case of the
quercetin solid forms. Solid State Nucl. Magn. Res. 65: 21-28. doi:10.1016/j.ssnmr.2014.10.006
-
Kavuru P, Aboarayes D, Arora K K, Clarke H D, Kennedy A, Marshall L, Ong
T T, Perman J, Pujari T, Wojtas Ł Łukasz and Zaworotko M J, 2010. Hierarchy
of supramolecular synthons: persistent hydrogen bonds between carboxylates
and weakly acidic hydroxyl moieties in cocrystals of zwitterions. Cryst.
Growth Des. 10: 3568-3584. doi:10.1021/cg100484a
-
Aparicio S A, 2010. Systematic computational study on flavonoids. Int.
J. Mol. Sci. 11: 2017−2038. doi:10.3390/ijms11052017
-
Leopoldini M, Marino T, Russo N and Toscano M, 2004. Density functional
computations of the energetic and spectroscopic parameters of quercetin
and its radicals in the gas phase and in solvent. Theor. Chem. Acc. 111:
210−216. doi:10.1007/s00214-003-0544-1
-
Antonczak S, 2008. Electronic description of four flavonoids revisited
by DFT method. J. Mol. Struct.: THEOCHEM. 856: 38−45. doi:10.1016/j.theochem.2008.01.014
-
Bogdan T V, Trygubenko S A, Pylypchuck L B, Potyahaylo A L, Samijlenko
S P and Hovorun D M, 2001. Conformational analysis of the quercetin molecule.
Sci. Notes of NaUKMA. 19: 456−460.
-
Bogdan T V, Trygubenko S A, Pylypchuck L B and Hovorun D M, 2003. Acid-base
properties of quercetin molecule: results of quantum-chemical calculations.
Repts. Natl. Acad. Sci. Ukraine. 4: 151−154.
-
Kelder G, van der Vijgh W J and Bast A, 1996. A quantum chemical explanation
of the antioxidant activity of flavonoids. Chem. Res. Toxicol. 9: 1305-1312.
doi:10.1021/tx9600964
-
Cornard J P, Dangleterre L and Lapouge C, 2005. Computational and spectroscopic
characterization of the molecular and electronic structure of the Pb(II)-quercetin
complex. J. Phys. Chem. A. 109: 10044-10051. doi:10.1021/jp053506i
-
Brovarets' O O and Hovorun D M, 2020. Conformational diversity of the quercetin
molecule: a quantum-chemical view. J. Biomol. Struct. Dyn. 38: 2817−2836.
doi:10.1080/07391102.2019.1656671
-
Frisch M J, Trucks G W, Schlegel H B, Scuseria et al. Gaussian 09 (Revision
A.02). Gaussian, Inc., Wallingford CT (2009).
-
Halls M D, Velkovski J and Schlegel H B, 2001. Harmonic frequency scaling
factors for Hartree-Fock, S-VWN, B-LYP, B3-LYP, B3-PW91 and MP2 with the
Sadlej pVTZ electric property basis set. Theor. Chem. Acc. 105: 413−421.
doi:10.1007/s002140000204
-
Kutovyy S Yu, Pashchenko V G and Zaika L A, 2005. Manifestation in the
Raman spectra of the effect of berberine on DNA. Visn. Kyiv Univ., Ser.
Fiz.-Mat. 7: 12−16.
-
Yashchuk V M, Kutovyy S Yu, Bashmakova N V, Pashchenko V G, Dudko O V and
Zaika L A, 2007. The manifestation in Raman and photoluminescence spectra
of the DNA-berberine interactions. Nauk. Zapys. Kyiv-Mogyla Acad., Ser.
Fiz.-Mat. 51: 42−48.
(c) Ukrainian Journal
of Physical Optics |