Ukrainian Journal of Physical Optics 

Volume 22, Issue 4, 2021

Home page
 
 

Other articles 

in this issue
Vibrational spectra of quercetin and their interpretation with quantum-mechanical density-functional method

1Kutovyy S., 1Savchuk R., 1Bashmakova N., 1Stanovyi O. and 2Palchykivska L.

1Faculty of Physics, Taras Shevchenko National University of Kyiv, 64/13   Volodymyrska Street, 01601 Kyiv, Ukraine, sangulaire@gmail.com
2Department of Molecular and Quantum Biophysics, Institute of Molecular Biology   and Genetics, National Academy of Sciences of Ukraine, 150 Academician   Zabolotnyi Street, 03143 Kyiv, Ukraine.

Download this article

Abstract. Experimental vibrational (Raman and IR-absorption) spectra are obtained for microcrystalline powder of quercetin in the spectral range of 400−1800 cm−1 at the room temperature. Optimized geometries of two stable isomers of quercetin molecule are calculated with a density-functional method at the level CAM B3LYP/6-311++G(d,p). The isomers have an almost planar frame structure and differ by mirror orientations of one of the rings with respect to the other rings. Vibrational spectra of the isomers are calculated in harmonic approximation at the same level of theory. The scaling factors determined experimentally for each of the two isomers have been used when comparing the calculated and experimental data. The vibrational spectra are interpreted in the whole frequency range under test. Good correlation of the experimental and calculated vibrational spectra is obtained.

Keywords: quercetin, Raman spectra, infrared absorption spectra, density-functional method

UDC: 535.37; 535.58
Ukr. J. Phys. Opt. 22 181-197
doi: 10.3116/16091833/22/4/181/2021
Received: 05.07.2021

Анотація. Для мікрокристалічного порошку кверцетину одержано експериментальні коливні спектри (комбінаційне розсіяння та ІЧ-поглинання) в спектральному діапазоні 400−1800 см−1 за кімнатної температури. Оптимізовані геометрії двох стабільних ізомерів молекули кверцетину обчислено за методом функціоналу щільності на рівні CAM B3LYP/6-311++G(d,p). Вищезазначені ізомери мають майже площинну структуру каркасу і відрізняються дзеркальною орієнтацією одного з кілець щодо інших. На цьому ж рівні теорії в гармонічному наближенні обчислено коливні спектри ізомерів. Коефіцієнти масштабування, визначені експериментально для кожного з двох ізомерів, було використано в порівнянні розрахункових та експериментальних даних. Коливні спектри проінтерпретовано для всього дослідженого діапазону частот. Одержано високу кореляцію між експериментальними та розрахунковими коливними спектрами.

Ключові слова: кверцетин, спектри КРС, спектри інфрачервоного поглинання, метод функціональної щільності

REFERENCES
  1. Davis J M, Murphy E A and Carmichael M D, 2009. Effects of the dietary flavonoid quercetin upon performance and health. Curr. Sports Med. Rep. 8: 206-213. doi:10.1249/JSR.0b013e3181ae8959
  2. Trouillas P, Marsal P, Siri D, Lazzaroni R and Duroux J-L, 2006. A DFT study of the reactivity of OH groups in quercetin and taxifolin antioxidants: the specificity of the 3-OH site. Food Chem. 97: 679-688. doi:10.1016/j.foodchem.2005.05.042
  3. Bentz A B, 2009. A review of quercetin: chemistry, antioxidant properties, and bioavailability. J. Young Investig. 19.
  4. Cadenas E and Packer L. Handbook of Antioxidants. New York: Marcel Dekker, 2002.
  5. David A V A, Arulmoli R and Parasuraman S, 2016. Overviews of biological importance of quercetin: a bioactive flavonoid. Pharmacogn. Rev. 10: 84-89. doi:10.4103/0973-7847.194044
  6. Drugbank. https://www.drugbank.ca/drugs/DB04216.
  7. Abarikwu S O, Pant A B and Farombi E O, 2012. Dietary antioxidant, quercetin, protects sertoli-germ cell coculture from atrazine-induced oxidative damage. J. Biochem. Mol. Toxicol. 26: 477-485. doi:10.1002/jbt.21449
  8. Aguirre L, Arias N, Macarulla M T, Gracia A and Portillo M P, 2011. Beneficial effects of quercetin on obesity and diabetes. Open Nutraceuticals J. 4: 189-198. doi:10.2174/1876396001104010189
  9. Nathiya S, Durga M and Devasena T, 2014. Quercetin, encapsulated quercetin and its application - a review. Int. J. Pharm. & Pharm. Sci. 10: 20−26.
  10. Pham-Huy L A, He H and Pham-Huy C, 2008. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. 4: 89−96.
  11. Porcu E P, Cossu M, Rassu G, Giunchedi P, Cerri G, Pourová J, Najmanová I, Migkos T, Pilařová V, Nováková L, Mladěnka P and Gavini E, 2018. Aqueous injection of quercetin: an approach for confirmation of its direct in vivo cardiovascular effects. Int. J. Pharm. 541: 224−233. doi:10.1016/j.ijpharm.2018.02.036
  12. Ramadan M F and Asker M M S, 2009. Antimicrobical and antivirial impact of novel quercetinen riched lecithin. J. Food Biochem. 33: 557−571. doi:10.1111/j.1745-4514.2009.00237.x
  13. Rauf A, Imran M, Khan I A, ur-Rehman M, Gilani S A, Mehmood Z and Mubarak M S, 2018. Anticancer potential of quercetin: a comprehensive review. Phytother. Res. 32: 2109−2130. doi:10.1002/ptr.6155
  14. Cai X, Fang Z, Dou J, Yu A and Zhai G, 2013. Bioavailability of quercetin: problems and promises. Curr. Med. Chem. 20: 2572−2582. doi:10.2174/09298673113209990120
  15. Gao S, Sofic E and Prior R L, 1997. Antioxidant and pro-oxidant behavior of flavonoids: structure-activity relationships. Free Radic. Biol. Med. 22: 749−760. doi:10.1016/S0891-5849(96)00351-6
  16. Jovanovic S V, Steenken S, Hara Y and Simic M G, 1996. Reduction potentials of flavonoid and model phenoxyl radicals. Which ring in flavonoids is responsible for antioxidant activity. J. Chem. Soc. Trans. 2: 2497−2504. doi:10.1039/p29960002497
  17. Van Acker S A B E, de Groot M J, van den Ber D-J, Tromp M N J L, Donné-Op den Kelder G, van der Vijgh W J F and Bast A, 1986. A quantum chemical explanation of the antioxidant activity of flavonoids. Chem. Res. Toxicol. 9: 1305-1312. doi:10.1021/tx9600964
  18. Van Acker S A B E, van der Berg D J, Tromp M N J L, Griffen D H, van Bennekom W P, van der Vijgh W J F and Bast A, 1996. Structural aspects of antioxidant activity of flavonoids. Free Radical Biol. Med. 20: 331−342. doi:10.1016/0891-5849(95)02047-0
  19. Van Acker S A, de Groot M J, van den Berg D J, Tromp M N, Donné-Op den van Acker S A B E, Bast A and van der Vijgh W J F, 1998. The structural aspects in relation to antioxidant activity of flavonoids. Antioxid. Health Dis., pp. 221−251.
  20. Karmakar A and Singh B, 2019. Spectroscopic analysis and theoretical investigation of hydrogen bonding interaction of quercetin with different acceptor molecules. J. Mol. Struct. 1180: 698−707. doi:10.1016/j.molstruc.2018.12.034
  21. Cornard J P, Merlin J C, Boudet A C and Vrielynck L, 1997. Structural study of quercetin by vibrational and electronic spectroscopies combined with semiempirical calculations. Biospectrosc. 3: 183-193. doi:10.1002/(SICI)1520-6343(1997)3:3<183::AID-BSPY2>3.0.CO;2-7
  22. Jurasekova Z, Garcia-Ramos J V, Domingo C and Sanchez-Cortes S, 2006. Surface-enhanced Raman scattering of flavonoids. J. Raman Spectrosc. 37: 1239-1241. doi:10.1002/jrs.1634
  23. Jurasekova Z, Domingo C, Garcia-Ramos J V and Sanchez-Cortes S, 2014. Effect of pH on the chemical modification of quercetin and structurally related flavonoids characterized by optical (UV-visible and Raman) spectroscopy. Phys. Chem. & Chem. Phys. 16: 12802−12811. doi:10.1039/C4CP00864B
  24. Dimitrić Marković J M, Marković Z S, Milenković D and Jeremić S, 2011. Application of comparative vibrational spectroscopic and mechanistic studies in analysis of fisetin structure. Spectrochim. Acta. A. 83: 120−129. doi:10.1016/j.saa.2011.08.001
  25. Numata Y and Tanaka H, 2011. Quantitative analysis of quercetin using Raman spectroscopy. Food Chem. 126: 751-755. doi:10.1016/j.foodchem.2010.11.059
  26. Borghettia G S, Carinia J P, Honoratob S B, Ayalab A P, Moreirac J C F and Bassania V L, 2012. Physicochemical properties and thermal stability of quercetin hydrates in the solid state. Thermochim. Acta. 539: 109-114. doi:10.1016/j.tca.2012.04.015
  27. Raza A, Xu X, Xia L, Xia C, Tang J and Ouyang Z, 2016. Quercetin-iron complex: synthesis, characterization, antioxidant, DNA binding, DNA cleavage, and antibacterial activity studies. J. Fluoresc. 26: 2023−2031. doi:10.1007/s10895-016-1896-y
  28. Pompeu D R, Larondelle Y, Rogez H, Abbas O, Fernández Pierna J A and Baeten V, 2018. Characterization and discrimination of phenolic compounds using Fourier transform Raman spectroscopy and chemometric tools. Biotechnol. Agron. Soc. Environ. 22: 13−28.
  29. Hanuza J, Godlewska P, Kucharska E, Ptak M, Kopacz M, Mączka M, Hermanowicz K and Macalik L, 2017. Molecular structure and vibrational spectra of quercetin and quercetin-5'-sulfonic acid. Vibr. Spectr. 88: 94-105. doi:10.1016/j.vibspec.2016.11.007
  30. Teslova T, Corredor C, Livingstone R, Spataru T, Birke R L, Lombardi J R, Canamares M V and Leona M, 2007. Raman and surface-enhanced Raman spectra of flavone and several hydroxyl derivatives. J. Raman Spectrosc. 38: 802-818. doi:10.1002/jrs.1695
  31. Kanakis C D, Tarantilis P A, Polissiou M G, Diamantoglou S and Tajmir-Riahi H A, 2005. DNA interaction with naturally occurring antioxidant flavonoids quercetin, kaempferol, and delphinidin. J. Biomolec. Struct. Dynam. 22: 719−724. doi:10.1080/07391102.2005.10507038
  32. Rossi M, Rickles L F and Halpin W A, 1986. The crystal and molecular structure of quercetin: A biologically active and naturally occurring flavonoid. Bioorg. Chem. 14: 55-69. doi:10.1016/0045-2068(86)90018-0
  33. Jin G Z, Yamagata Y and Tomita K I, 1990. Structure of quercetin dihydrate. Acta Cryst. C. 46: 310-313. doi:10.1107/S0108270189006682
  34. Domagała S, Munshi P, Ahmed M, Guillot B and Jelsch C, 2010. Structural analysis and multipole modelling of quercetin monohydrate - a quantitative and comparative study. Acta Cryst. B. 67: 63-78. doi:10.1107/S0108768110041996
  35. Filip X, Grosu I-G, Miclăuş M and Filip C, 2013. NMR crystallography methods to probe complex hydrogen bonding networks: application to structure elucidation of anhydrous quercetin. Cryst. Eng. Comm. 15: 4131−4142. doi:10.1039/c3ce40299a
  36. Filip X and Filip C, 2015. Can the conformation of flexible hydroxyl groups be constrained by simple NMR crystallography approaches? The case of the quercetin solid forms. Solid State Nucl. Magn. Res. 65: 21-28. doi:10.1016/j.ssnmr.2014.10.006
  37. Kavuru P, Aboarayes D, Arora K K, Clarke H D, Kennedy A, Marshall L, Ong T T, Perman J, Pujari T, Wojtas Ł Łukasz and Zaworotko M J, 2010. Hierarchy of supramolecular synthons: persistent hydrogen bonds between carboxylates and weakly acidic hydroxyl moieties in cocrystals of zwitterions. Cryst. Growth Des. 10: 3568-3584. doi:10.1021/cg100484a
  38. Aparicio S A, 2010. Systematic computational study on flavonoids. Int. J. Mol. Sci. 11: 2017−2038. doi:10.3390/ijms11052017
  39. Leopoldini M, Marino T, Russo N and Toscano M, 2004. Density functional computations of the energetic and spectroscopic parameters of quercetin and its radicals in the gas phase and in solvent. Theor. Chem. Acc. 111: 210−216. doi:10.1007/s00214-003-0544-1
  40. Antonczak S, 2008. Electronic description of four flavonoids revisited by DFT method. J. Mol. Struct.: THEOCHEM. 856: 38−45. doi:10.1016/j.theochem.2008.01.014
  41. Bogdan T V, Trygubenko S A, Pylypchuck L B, Potyahaylo A L, Samijlenko S P and Hovorun D M, 2001. Conformational analysis of the quercetin molecule. Sci. Notes of NaUKMA. 19: 456−460.
  42. Bogdan T V, Trygubenko S A, Pylypchuck L B and Hovorun D M, 2003. Acid-base properties of quercetin molecule: results of quantum-chemical calculations. Repts. Natl. Acad. Sci. Ukraine. 4: 151−154.
  43. Kelder G, van der Vijgh W J and Bast A, 1996. A quantum chemical explanation of the antioxidant activity of flavonoids. Chem. Res. Toxicol. 9: 1305-1312. doi:10.1021/tx9600964
  44. Cornard J P, Dangleterre L and Lapouge C, 2005. Computational and spectroscopic characterization of the molecular and electronic structure of the Pb(II)-quercetin complex. J. Phys. Chem. A. 109: 10044-10051. doi:10.1021/jp053506i
  45. Brovarets' O O and Hovorun D M, 2020. Conformational diversity of the quercetin molecule: a quantum-chemical view. J. Biomol. Struct. Dyn. 38: 2817−2836. doi:10.1080/07391102.2019.1656671
  46. Frisch M J, Trucks G W, Schlegel H B, Scuseria et al. Gaussian 09 (Revision A.02). Gaussian, Inc., Wallingford CT (2009).
  47. Halls M D, Velkovski J and Schlegel H B, 2001. Harmonic frequency scaling factors for Hartree-Fock, S-VWN, B-LYP, B3-LYP, B3-PW91 and MP2 with the Sadlej pVTZ electric property basis set. Theor. Chem. Acc. 105: 413−421. doi:10.1007/s002140000204
  48. Kutovyy S Yu, Pashchenko V G and Zaika L A, 2005. Manifestation in the Raman spectra of the effect of berberine on DNA. Visn. Kyiv Univ., Ser. Fiz.-Mat. 7: 12−16.
  49. Yashchuk V M, Kutovyy S Yu, Bashmakova N V, Pashchenko V G, Dudko O V and Zaika L A, 2007. The manifestation in Raman and photoluminescence spectra of the DNA-berberine interactions. Nauk. Zapys. Kyiv-Mogyla Acad., Ser. Fiz.-Mat. 51: 42−48.
(c) Ukrainian Journal of Physical Optics