Home
page
Other articles
in this issue |
Electronic band structure
of cubic solid-state CdTe1–xSex solutions
1Ilchuk H.A., 2Andriyevsky
B., 3Kushnir O.S., 1*Kashuba
A.I., 1Semkiv I.V. and 1Petrus
R.Yu.
1Department of General Physics, Lviv Polytechnic
National University, 12 Bandera Street, 79046 Lviv, Ukraine.
*andrii.i.kashuba@lpnu.ua
2Faculty of Electronics and Computer Sciences,
Koszalin University of Technology, 2 Sniadeckich Street, 75-453
Koszalin, Poland
3Electronics and Computer Technologies Department,
Ivan Franko National University of Lviv, 107 Tarnavsky Street,
79005 Lviv, Ukraine
Download this
article
Abstract. We report on the electronic band structure of solid-state
solutions CdTe1–xSex (CTS, 0 < x ≤ 5/16) calculated
in the framework of density functional theory. The structure of CTS is
calculated following from the ‘parent’ binary compound CdTe, which
is crystallized in a cubic phase. The bandgap of CTS is found to be of
a direct type for all of the solid-state solutions under test. A decrease
in the bandgap Eg is found with increasing selenium content
x. The Eg(x) dependence reveals some deviations from
a simple linear function. The free-carrier concentration increases with
increasing selenium content. It is shown that interaction among the atoms
of host matrix (CdTe) and substitution selenium atoms causes splitting
of the valence bands into heavy-hole and light-hole subbands and spin-orbit
splitting, while the conduction bands remain unaffected. The dependence
of refractive index on the selenium content is obtained
Keywords: solid-state solutions, CdTe, concentration
dependences, electronic band structure, carrier concentration, refractive
index
UDC: 544.225.22, 621.315.592, 535.323
Ukr. J. Phys. Opt. 22 101-109
doi: 10.3116/16091833/22/2/101/2021
Received: 22.02.2021
Анотація. У рамках теорії функціонала
густини розраховано електронну зонну структуру
твердотільних розчинів CdTe1–xSex
(CTS, 0 < x ≤ 5/16). Структуру CTS одержано, виходячи
з «материнської» бінарної сполуки CdTe, яка
кристалізується в кубічній фазі. Встановлено,
що всі вивчені нами твердотільні розчини
CTS є прямозонними. Виявлено звуження ширини
щілини Eg зі зростанням вмісту селену
x. Залежність Eg(x) дещо відхиляється
від лінійної. Концентрація вільних носіїв
зростає зі зростанням вмісту селену. Показано,
що взаємодія між атомами матриці-господаря
(CdTe) та атомами заміщення селену викликає
розщеплення валентних смуг на важкі діркові
та легкі діркові підзони, а також спін-орбітальне
розщеплення, тоді як смуги провідності
залишаються незмінними. Одержано залежність
показника заломлення від вмісту селену.
Ключові слова: тверді розчини, CdTe, концентраційні
залежності, електронна зонна структура,
концентрація носіїв, показник заломлення |
|
REFERENCES
-
Romeo N, Bosio A, Tedeschi R and Canevari V, 2000. Growth of polycrystalline
CdS and CdTe thin layers for high efficiency thin film solar cells. Mater.
Chem. Phys. 66: 201-206. doi:10.1016/S0254-0584(00)00316-3
-
McCandless B E and Dobson K D, 2004. Processing options for CdTe thin film
solar cells. Sol. Energy. 77: 839-856. doi:10.1016/j.solener.2004.04.012
-
Treharne R E, Seymour-Pierce A, Durose K, Hutchings K, Roncallo S and Lane
D, 2011. Optical design and fabrication of fully sputtered CdTe/CdS solar
cells. J. Phys.: Conf. Ser. 286: 012038. doi:10.1088/1742-6596/286/1/012038
-
Basola B M and McCandless B, 2014. Brief review of cadmium telluride-based
photovoltaic technologies. J. Photon. Energy. 4: 040996. doi:10.1117/1.JPE.4.040996
-
Romeo N, Bosio A, Canevari V and Podesta A, 2014. Recent progress on CdTe/CdS
thin film solar cells. Sol. Energy. 77: 795-801. doi:10.1016/j.solener.2004.07.011
-
Paudel N R, Xiao C and Yan Y, 2014. Close-space sublimation grown CdS window
layers for CdS/CdTe thin-film solar cells. J. Mater. Sci.: Mater. Electron.
25: 1991-1998. doi:10.1007/s10854-014-1834-1
-
Petrus R, Ilchuk H, Kashuba A, Semkiv I and Zmiiovska E, 2020. Optical
properties of CdTe thin films obtained by the method of high-frequency
magnetron sputtering. Funct. Mater. 27: 342-347. doi:10.15407/fm27.02.342
-
Ilchuk H, Petrus R, Kashuba A, Semkiv I and Zmiiovska E, 2020. Optical-energy
properties of CdSe thin film. Mol. Cryst. Liq. Cryst. 699: 1-8. doi:10.1080/15421406.2020.1732532
-
Il'chuk G A, Petrus R Yu, Kashuba A I, Semkiv I V and Zmiiovs'ka E O, 2020.
Peculiarities of the optical and energy properties of thin CdSe films.
Opt. Spectrosc. 128: 50-57. doi:10.1134/S0030400X20010105
-
Ilchuk H A, Petrus R Yu, Kashuba A I, Semkiv I V and Zmiiovska E O, 2018.
Optical-energy properties of the bulk and thin-film cadmium telluride (CdTe).
Nanosystems, Nanomaterials, Nanotechnologies. 16: 519-533. doi:10.15407/nnn.16.03.519
-
Kale R B and Lokhande C D, 2005. Band gap shift, structural characterization
and phase transformation of CdSe thin films from nanocrystalline cubic
to nanorod hexagonal on air annealing. Semicond. Sci. Technol. 20: 1. doi:10.1088/0268-1242/20/1/001
-
Kainthla R C, Pandya D K and Chopra K L, 1980. Solution growth of CdSe
and PbSe films. J. Electrochem. Soc. 127: 277. doi:10.1149/1.2129655
-
Poplawsky J D, Guo W, Paudel N, Ng A, More K, Leonard D and Yan Y, 2016.
Structural and compositional dependence of the CdTexSe1-x alloy layer photoactivity
in CdTe-based solar cells. Nature Commun. 7: 12537. doi:10.1038/ncomms12537
-
Reshak A H and Jamal M, 2017. Investigation of pressure-induced phase transitions
of the solar cell materials CdTexSe1-x alloys: one- and two-dimensional
search DFT calculation. Phase Trans. 90: 1155-1166.
-
Jamal M, Abu-Jafar M S and Dahliah D, 2017. Disclosing the structural,
phase transition, elastic and thermodynamic properties of CdTexSe1-x (x
= 0.0, 0.25, 0.5, 0.75, 1.0) using LDA exchange correlation. Results in
Physics. 7: 2213-2223. doi:10.1016/j.rinp.2017.06.033
-
Shakil M, Zafar M, Ahmed S, Hashmi R M, Choudhary M A and Iqbal T, 2016.
Theoretical calculations of structural, electronic, and elastic properties
of CdTexSe1-x: A first principles study. Chin. Phys. B. 25: 076104. doi:10.1088/1674-1056/25/7/076104
-
Reshak A H, Kityk I V, Khenata R and Auluck S, 2011. Effect of increasing
tellurium content on the electronic and optical properties of cadmium selenide
telluride alloys CdTexSe1-x: An ab initio study. J. Alloys and Comp. 509:
6737-6750. doi:10.1016/j.jallcom.2011.03.029
-
Ouendadji S, Ghemid S, Bouarissa N, Meradji H and El Haj Hassan F, 2011.
Ab initio study of structural, electronic, phase diagram, and optical properties
of CdTexSe1-x semiconducting alloys. J. Mater. Sci. 46: 3855-3861. doi:10.1007/s10853-011-5306-1
-
Kashuba A I, Ilchuk H A, Petrus R Yu, Andriyevsky B, Semkiv I V and Zmiyovska
E O, 2021. Growth, crystal structure and theoretical studies of energy
and optical properties of CdTexSe1-x thin films. Appl. Nanosci. doi:10.1007/s13204-020-01635-0
-
Ilchuk H A, Korbutyak D V, Kashuba A I, Andriyevsky B, Kupchak I M, Petrus
R Yu and Semkiv I V, 2020. Elastic properties of CdTexSe1-x (x = 1/16)
solid solution: first principles study. Semicond. Phys., Quant. Electron.
& Optoelectron. 23: 355-360. doi:10.15407/spqeo23.04.355
-
Andriyevsky B, Kashuba A I, Kunyo I M, Dorywalski K, Semkiv I V, Karpa
I V, Stakhura V B, Andriyevska L, Piekarski J and Piasecki M, 2019. Electronic
bands and dielectric functions of In0.5Tl0.5I solid state solution with
structural defects. J. Electron. Mater. 48: 5586-5594. doi:10.1007/s11664-019-07404-2
-
Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K and
Payne M C, 2005. First principles methods using CASTEP. Z. Kristallogr.
220: 567-570. doi:10.1524/zkri.220.5.567.65075
-
Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin
L A, Zhou X and Burke K, 2008. Restoring the density-gradient expansion
for exchange in solids and surfaces. Phys. Rev. Lett. 100: 136406. doi:10.1103/PhysRevLett.100.136406
-
Monkhorst H J and Pack J D, 1976. Special points for Brillouin-zone integrations.
Phys. Rev. B. 13: 5188. doi:10.1103/PhysRevB.13.5188
-
Turko B, Mostovoy U, Kovalenko M, Eliyashevskyi Y, Kulyk Y, Bovgyra O,
Dzikovskyi V, Kostruba A, Vlokh R, Savaryn V, Stybel V, Tsizh B and Majevska
S, 2021. Effect of dopant concentration and crystalline structure on the
absorption edge in ZnO:Y films. Ukr. J. Phys. Opt. 22: 31-37. doi:10.3116/16091833/22/1/31/2021
-
Freik D M, Chobanyuk V M, Krunutcky O S and Gorichok I V, 2012. Photovoltaic
solar energy converters based on cadmium telluride II. The main achievements
and current status (Review). Phys. Chem. Solid State. 13: 744-758.
-
Das S, Bhowal M K and Dhar S, 2019. Calculation of the band structure,
carrier effective mass, and the optical absorption properties of GaSbBi
alloys. J. Appl. Phys. 125: 075705. doi:10.1063/1.5065573
-
Moss T A, 1950. Relationship between the refractive index and the infra-red
threshold of sensitivity for photoconductors. Proc. Phys. Soc. B. 63: 167−176.
doi:10.1088/0370-1301/63/3/302
-
Ravindra N M, Auluck S and Srivastava V K, 1979. On the Penn gap in semiconductors.
Phys. Stat. Solidi (b). 93: K155−K160. doi:10.1002/pssb.2220930257
-
Herve P J L and Vandamme L K J, 1995. Empirical temperature dependence
of the refractive index of semi-conductors. J. Appl. Phys. 77: 5476−5477.
doi:10.1063/1.359248
-
Tripathy S K, 2015. Refractive indices of semiconductors from energy gaps.
Opt. Mater. 46: 240−246. doi:10.1016/j.optmat.2015.04.026
-
Anani M, Mathieu C, Lebid S, Amar Y, Chama Z and Abid H, 2008. Model for
calculating the refractive index of a III-V semiconductor. Comput. Mat.
Sci. 41: 570−575. doi:10.1016/j.commatsci.2007.05.023
-
Reddy R R, Ram Gopal K, Narasimhulu K, Reddy L S S, Kumar K R, Balakrishnan
G and Ravi Kumar M, 2009. Interrelationship between structural, optical,
electronic and elastic properties of materials. J. Alloys Comp. 473: 28−35.
doi:j.jallcom.2008.06.037
-
Kushnir O S, Shchepanskyi P A, Stadnyk V Yo and Fedorchuk A O, 2019. Relationships
among optical and structural characteristics of ABSO4 crystals. Opt. Mater.
95: 109221. doi:10.1016/j.optmat.2019.109221
(c) Ukrainian Journal
of Physical Optics |