Ukrainian Journal of Physical Optics 

Volume 22, Issue 2, 2021

Home page
 
 

Other articles 

in this issue
Surface-localized plasmon resonance in a system of randomly arranged gold nanorods on a dielectric substrate

1*Yaremchuk I., 2Pidluzhna A., 3Stakhira P., 4Kuntyi O., 4Sus L., 5Savaryn V., 5Kostruba A., 1Fitio V. and 1,6Bobitski Y.

1Department of Photonics, Lviv Polytechnic National University, S. Bandera Street 12, 79013 Lviv, Ukraine, iryna.y.yaremchuk@lpnu.ua 
2Department of Applied Physics and Nanomaterials Science, Lviv Polytechnic National University, S. Bandera Street 12, 79013 Lviv, Ukraine
3Department of Electronic Devices, Lviv Polytechnic National University, S. Bandera Street 12, 79013 Lviv, Ukraine
4Department of Chemistry and Chemical Technology, Lviv Polytechnic National University, S. Bandera Street 12, 79013 Lviv, Ukraine
5Department of Physics and Mathematics, Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies, 79010 Lviv, Ukraine
6Department of Physics, College of Natural Sciences, Institute of Physics, University of Rzeszow, Pigonia Street 1, 35959 Rzeszow, Poland

Download this article

Abstract. Gold-nanorod arrays of a quasi-hexagonal shape are successfully obtained with electrochemical deposition method and their optical properties are investigated. The optical response of a two-layer structure, in which the first layer is a nanocomposite consisting of Au nanorods and the second one is a thin indium tin oxide film on a glass substrate, has been analyzed. Dependences of absorption cross-section of Au nanorods on the light wavelength at different eccentricities are modelled using electrostatic approximation. It is shown that longitudinal plasmon resonance prevails over other resonances for the Au nanorods deposited on glass substrates. A Maxwell−Garnett theory and a matrix method are used to predict the optical characteristics of the whole structure. We have demonstrated that it is possible to estimate the concentration of nanorods on the surface using the appropriate simulation results. In addition, efficient absorption properties can be obtained at a given wavelength by changing the geometry of nanorods. In particular, there is a shift of the absorption peak towards near-infrared region whenever the nanorods become high enough and smaller in diameter.

Keywords: plasmon resonance, nanoparticles, arrays of Au nanorods, dielectric permittivity

UDC: 517.958:535.14, 53.072:53:004
Ukr. J. Phys. Opt. 22 69-82
doi: 10.3116/16091833/22/2/69/2021
Received: 23.12.2020

Анотація. Матриці наностержнів золота квазігексагональної форми успішно одержано за методом електрохімічного висадження. Досліджені їхні оптичні властивості. Проаналізовано оптичний відгук двошарової структури, в якій перший шар є нанокомпозитом, що складається з наностержнів Au, а інший − тонкою плівкою оксиду олова індію на скляній підкладці. У рамках електростатичного наближення виконано моделювання залежності перетину поглинання наностержнів Au від довжини світлової хвилі для різних ексцентриситетів. Показано, що поздовжній плазмонний резонанс переважає над іншими типами резонансів у наностержнях Au, нанесених на скляні підкладки. Для прогнозування оптичних характеристик всієї структури використано теорію Максвелла−Ґарнета та матричний метод. Продемонстровано, що на основі відповідних результатів моделювання можна оцінити концентрацію наностержнів на поверхні. Крім того, потрібне поглинання на заданій довжині хвилі можна одержати шляхом зміни геометрії наностержнів. Зокрема, ми спостерігали зсув піку поглинання в напрямку ближньої інфрачервоної області, якщо наностержні набувають достатню висоту та стають меншими в діаметрі.

REFERENCES
  1. Kasani S, Curtin K and Wu N, 2019. A review of 2D and 3D plasmonic nanostructure array patterns: fabrication, light management and sensing applications. Nanophotonics. 8: 2065−2089. doi:10.1515/nanoph-2019-0158
  2. Ma X, Song S, Kim S, Kwon M S, Lee H, Park W and Sim S J, 2019. Single gold-bridged nanoprobes for identification of single point DNA mutations. Nature Commun. 10: 1−13. doi:10.1038/s41467-019-08769-y
  3. Striebel M, Wrachtrup J and Gerhardt I, 2017. Absorption and extinction cross sections and photon streamlines in the optical near-field. Sci. Rep. 7: 1−13. doi:10.1038/s41598-017-15528-w
  4. Zaman Q, Souza J, Pandoli O, Costa K Q, Dmitriev V, Fulvio D and Del Rosso T, 2019. Two-color surface plasmon resonance nanosizer for gold nanoparticles. Opt. Express. 27: 3200−3216. doi:10.1364/OE.27.003200
  5. Mogensen K B and Kneipp K, 2014. Size-dependent shifts of plasmon resonance in silver nanoparticle films using controlled dissolution: monitoring the onset of surface screening effects. J. Phys. Chem. C. 118: 28075−28083. doi:10.1021/jp505632n
  6. Lesyuk R, Klein E, Yaremchuk I and Klinke C, 2018. Copper sulfide nanosheets with shape-tunable plasmonic properties in the NIR region. Nanoscale. 10: 20640−20651. doi:10.1039/C8NR06738D
  7. Rao K S, Ganeev R A, Zhang K, Fu Y, Boltaev G S, Maurya S K and Guo C, 2019. Comparative analyses of optical limiting effects in metal nanoparticles and perovskite nanocrystals. Opt. Mater. 92: 366−372. doi:10.1016/j.optmat.2019.04.058
  8. Maier S A. Plasmonics: fundamentals and applications (Springer Science & Business Media, 2007). doi:10.1007/0-387-37825-1
  9. Gramotnev D K and Bozhevolnyi S I, 2014. Nanofocusing of electromagnetic radiation. Nature Photonics. 8: 13. doi:10.1038/nphoton.2013.232
  10. Huang Y, Zhang X, Ringe E, Hou M, Ma L and Zhang Z, 2016. Tunable lattice coupling of multipole plasmon modes and near-field enhancement in closely spaced gold nanorod arrays. Sci. Rep. 6: 23159. doi:10.1038/srep23159
  11. Zhang Y, Sun H, Zhang S, Li S, Wang X, Zhang X and Guo Z, 2019. Enhancing luminescence in all-inorganic perovskite surface plasmon light-emitting diode by incorporating Au-Ag alloy nanoparticle. Opt. Mater. 89: 563−567. doi:10.1016/j.optmat.2019.01.074
  12. Gao Q, Zhang X, Duan L, Li X and Lü W, 2019. Au nanoparticle-decorated TiO2 nanorod array for plasmon-enhanced quantum dot sensitized solar cells. Superlatt. Microstruct. 129: 185−192. doi:10.1016/j.spmi.2019.03.028
  13. Yang J, Liu Z, Hu Z, Zeng F, Zhang Z, Yao Y and Pi M, 2019. Enhanced single-mode lasers of all-inorganic perovskite nanocube by localized surface plasmonic effect from Au nanoparticles. J. Lumin. 208: 402−407. doi:10.1016/j.jlumin.2018.12.055
  14. Amendola V, Pilot R, Frasconi M, Marago O M and Iati M A, 2017. Surface plasmon resonance in gold nanoparticles: a review. J. Phys.: Condens. Matter. 29: 203002. doi:10.1088/1361-648X/aa60f3
  15. Lim D K, Barhoumi A, Wylie R G, Reznor G, Langer R S and Kohane D S, 2013. Enhanced photothermal effect of plasmonic nanoparticles coated with reduced graphene oxide. Nano Lett. 13: 4075−4079. doi:10.1021/nl4014315
  16. Alkilany A M, Lohse S E and Murphy C J, 2012. The gold standard: gold nanoparticle libraries to understand the nano-bio interface. Acc. Chem. Res. 46: 650−661. doi:10.1021/ar300015b
  17. Smitha S L, Gopchandran K G, Smijesh N and Philip R, 2013. Size-dependent optical properties of Au nanorods. Prog. Nat. Sci.: Mater. Int. 23: 36−43. doi:10.1016/j.pnsc.2013.01.005
  18. Ming T, Zhao L, Yang Z, Chen H, Sun L, Wang J and Yan C, 2009, Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods. Nano Lett. 9: 3896−3903. doi:10.1021/nl902095q
  19. Lan X and Wang Q, 2016. Self‐assembly of chiral plasmonic nanostructures. Adv. Mater. 28: 10499−10507. doi:10.1002/adma.201600697
  20. Chen H, Shao L, Li Q and Wang J, 2013, Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 42: 2679−2724. doi:10.1039/C2CS35367A
  21. Kravets V G, Kabashin A V, Barnes W L and Grigorenko A N, 2018. Plasmonic surface lattice resonances: a review of properties and applications. Chem. Rev. 118: 5912−5951. doi:10.1021/acs.chemrev.8b00243
  22. Dong J, Zhao X, Gao W, Han Q, Qi J, Wang Y and Sun M, 2019. Nanoscale vertical arrays of gold nanorods by self-assembly: Physical mechanism and application. Nanoscale Res. Lett. 14: 118. doi:10.1186/s11671-019-2946-6
  23. Hong S, Shuford K L and Park S, 2011, Shape transformation of gold nanoplates and their surface plasmon characterization: triangular to hexagonal nanoplates. Chem. Mater. 23: 2011−2013. doi:10.1021/cm103273c
  24. Liu B, Yan H, Stosch R, Wolfram B, Bröring M, Bakin A and Lemmens P, 2017. Modelling plexcitons of periodic gold nanorod arrays with molecular components. Nanotechnol. 28: 195201. doi:10.1088/1361-6528/aa67d8
  25. Payne E K, Shuford K L, Park S, Schatz G C and Mirkin C A, 2006. Multipole plasmon resonances in gold nanorod. J. Phys. Chem. B. 110: 2150−2154. doi:10.1021/jp056606x
  26. McMillan B G, Berlouis L E, Cruickshank F R, Pugh D and Brevet P F, 2005. Transverse and longitudinal surface plasmon resonances of a hexagonal array of gold nanorods embedded in an alumina matrix. Appl. Phys. Lett. 86: 211912. doi:10.1063/1.1939070
  27. Lee K C, Chen Y H, Lin H Y, Cheng C C, Chen P Y, Wu T Y and Chang C W, 2015. Plasmonic gold nanorods coverage influence on enhancement of the photoluminescence of two-dimensional MoS2 monolayer. Sci. Rep. 5: 16374. doi:10.1038/srep16374
  28. Chen H, Ming T, Zhang S, Jin Z, Yang B and Wang, J, 2015. Effect of the dielectric properties of substrates on the scattering patterns of gold nanorods. ACS Nano. 5: 4865−4877. doi:10.1021/nn200951c
  29. Liu Y, Begin-Colin S, Pichon B P, Leuvrey C, Ihiawakrim D, Rastei M and Bigot J Y, 2014. Two dimensional dipolar coupling in monolayers of silver and gold nanoparticles on a dielectric substrate. Nanoscale. 6: 12080−12088. doi:10.1039/C4NR03292F
  30. Jia C, Li X, Xin N, Gong Y, Guan J, Meng L and Guo X, 2016. Interface-Engineered engineered Plasmonics plasmonics in Metalmetal/Semiconductor semiconductor Heterostructuresheterostructures. Adv. En. Mater. 6: 1600431. doi:10.1002/aenm.201600431
  31. Varyshchuk V, Bulavinets T, Yaremchuk I and Bobitski Y, 2018. The shape effect on the optical properties of metallic nanoparticles. In: 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET), p. 458−461. doi:10.1109/TCSET.2018.8336240
  32. Bulavinets T, Yaremchuk I, Fitio V and Bobitski Y, 2019. Spectral characteristics of the titanium dioxide-silver nanoshells under localized surface plasmon resonance. In: IEEE 2nd Ukrainian Conference on Electrical and Computer Engineering (UKRCON), p. 762−765. doi:10.1109/UKRCON.2019.8879811
  33. Bulavinets T, Yaremchuk I., Fitio V, Barylyak A and Bobitski Y, 2019. Comparison of spectral characteristics of TiO2@Ag and Ag@TiO2 core-shell nanoparticles. In: International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo), p. 1−4. doi:10.1109/UkrMiCo47782.2019.9165527
  34. Bulavinets T, Kulpa-Greszta M, Tomaszewska A, Kus-Liśkiewicz M, Bielatowicz G, Yaremchuk I, Barylyak A, Bobitski Y and Pązik R, 2020. Efficient NIR energy conversion of plasmonic silver nanostructures fabricated with the laser-assisted synthetic approach for endodontic applications. RSC Adv. 10: 38861−38872. doi:10.1039/D0RA06614A
  35. Fitio V, Yaremchuk I, Vernyhor O and Bobitski Y, 2018. Resonance of surface-localized plasmons in a system of periodically arranged gold and silver nanowires on a dielectric substrate. Appl. Nanosci. 8: 1015−1024. doi:10.1007/s13204-018-0686-z
  36. Fitio V, Yaremchuk I and Bobitski Y, 2011. Optical excitation of surface plasmon polariton and waveguide modes resonances on prismatic structures. Opt. Applicata. 41: 929−939.
  37. Saldan I, Dobrovetska O, Sus L, Makota O, Pereviznyk O, Kuntyi O and Reshetnyak O, 2018. Electrochemical synthesis and properties of gold nanomaterials. J. Solid State Electrochem. 22: 637−656. doi:10.1007/s10008-017-3835-5
  38. Stankevičius E, Garliauskas M, Laurinavičius L, Trusovas R, Tarasenko N and Pauliukaitė R, 2019. Engineering electrochemical sensors using nanosecond laser treatment of thin gold film on ITO glass. Electrochim. Acta. 297: 511−522. doi:10.1016/j.electacta.2018.11.197
  39. Sus L, Okhremchuk Y, Saldan I, Kuntyi O, Reshetnyak O and Korniy S, 2015. Controlled gold deposition by pulse electrolysis. Mater. Lett. 139: 296−299. doi:10.1016/j.matlet.2014.10.110
  40. Kuntyi O I, Sus LV, Kornii S A and Okhremchuk E V, 2016, Electrodeposition of gold nanoparticles in dimethylformamide solutions of H[AuCl4]. Mater. Sci. 51: 885−889. doi:10.1007/s11003-016-9917-1
  41. Brioude A, Jiang X C and Pileni M P, 2005. Optical properties of gold nanorods: DDA simulations supported by experiments. J. Phys. Chem. B. 109: 13138−13142. doi:10.1021/jp0507288
  42. Bohren C F and Huffman D R. Absorption and scattering of light by small particles (John Wiley & Sons, 2008).
  43. Dykman L and Khlebtsov N, 2012. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem. Soc. Rev. 41: 2256−2282. doi:10.1039/C1CS15166E
  44. Prescott S W and Mulvaney P, 2006. Gold nanorod extinction spectra. J. Appl. Phys. 99: 123504. doi:10.1063/1.2203212
  45. https://refractiveindex.info/?shelf=other&book=In2O3-SnO2&page=Konig-EMA
  46. König T A, Ledin P A, Kerszulis J, Mahmoud M A, El-Sayed M A, Reynolds J R and Tsukruk V V, 2014. Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer. ACS Nano. 8: 6182−6192. doi:10.1021/nn501601e
  47. Prasad P N. Nanophotonics (John Wiley & Sons, 2004).
  48. Levy O and Stroud D, 1997. Maxwell Garnett theory for mixtures of anisotropic inclusions: Application to conducting polymers. Phys. Rev. B. 56: 8035. doi:10.1103/PhysRevB.56.8035
  49. Ruppin R, 2000. Evaluation of extended Maxwell-Garnett theories. Opt. Commun. 182: 273−279. doi:10.1016/S0030-4018(00)00825-7
  50. Moerland R J and Hoogenboom J P, 2016. Subnanometer-accuracy optical distance ruler based on fluorescence quenching by transparent conductors. Optica. 3: 112−117. doi:10.1364/OPTICA.3.000112


(c) Ukrainian Journal of Physical Optics