Home
page
Other articles
in this issue |
Surface-localized
plasmon resonance in a system of randomly arranged gold nanorods on a dielectric
substrate
1*Yaremchuk I., 2Pidluzhna
A., 3Stakhira P., 4Kuntyi O., 4Sus L.,
5Savaryn
V., 5Kostruba A., 1Fitio V. and
1,6Bobitski
Y.
1Department of Photonics, Lviv Polytechnic
National University, S. Bandera Street 12, 79013 Lviv, Ukraine, iryna.y.yaremchuk@lpnu.ua
2Department of Applied Physics and Nanomaterials
Science, Lviv Polytechnic National University, S. Bandera Street 12, 79013
Lviv, Ukraine
3Department of Electronic Devices, Lviv Polytechnic
National University, S. Bandera Street 12, 79013 Lviv, Ukraine
4Department of Chemistry and Chemical Technology,
Lviv Polytechnic National University, S. Bandera Street 12, 79013 Lviv,
Ukraine
5Department of Physics and Mathematics, Stepan
Gzhytskyi National University of Veterinary Medicine and Biotechnologies,
79010 Lviv, Ukraine
6Department of Physics, College of Natural
Sciences, Institute of Physics, University of Rzeszow, Pigonia Street 1,
35959 Rzeszow, Poland
Download this
article
Abstract. Gold-nanorod arrays of a quasi-hexagonal shape are
successfully obtained with electrochemical deposition method and their
optical properties are investigated. The optical response of a two-layer
structure, in which the first layer is a nanocomposite consisting of Au
nanorods and the second one is a thin indium tin oxide film on a glass
substrate, has been analyzed. Dependences of absorption cross-section of
Au nanorods on the light wavelength at different eccentricities are modelled
using electrostatic approximation. It is shown that longitudinal plasmon
resonance prevails over other resonances for the Au nanorods deposited
on glass substrates. A Maxwell−Garnett theory and a matrix method are
used to predict the optical characteristics of the whole structure. We
have demonstrated that it is possible to estimate the concentration of
nanorods on the surface using the appropriate simulation results. In addition,
efficient absorption properties can be obtained at a given wavelength by
changing the geometry of nanorods. In particular, there is a shift of the
absorption peak towards near-infrared region whenever the nanorods become
high enough and smaller in diameter.
Keywords: plasmon resonance, nanoparticles,
arrays of Au nanorods, dielectric permittivity
UDC: 517.958:535.14, 53.072:53:004
Ukr. J. Phys. Opt. 22 69-82
doi: 10.3116/16091833/22/2/69/2021
Received: 23.12.2020
Анотація. Матриці наностержнів
золота квазігексагональної форми успішно
одержано за методом електрохімічного висадження.
Досліджені їхні оптичні властивості. Проаналізовано
оптичний відгук двошарової структури,
в якій перший шар є нанокомпозитом, що складається
з наностержнів Au, а інший − тонкою плівкою
оксиду олова індію на скляній підкладці.
У рамках електростатичного наближення
виконано моделювання залежності перетину
поглинання наностержнів Au від довжини
світлової хвилі для різних ексцентриситетів.
Показано, що поздовжній плазмонний резонанс
переважає над іншими типами резонансів
у наностержнях Au, нанесених на скляні підкладки.
Для прогнозування оптичних характеристик
всієї структури використано теорію Максвелла−Ґарнета
та матричний метод. Продемонстровано, що
на основі відповідних результатів моделювання
можна оцінити концентрацію наностержнів
на поверхні. Крім того, потрібне поглинання
на заданій довжині хвилі можна одержати
шляхом зміни геометрії наностержнів. Зокрема,
ми спостерігали зсув піку поглинання в
напрямку ближньої інфрачервоної області,
якщо наностержні набувають достатню висоту
та стають меншими в діаметрі.
Ключові слова: плазмонний резонанс,
наночастинки, масиви наностержнів Au, діелектрична
проникність |
|
REFERENCES
-
Kasani S, Curtin K and Wu N, 2019. A review of 2D and 3D plasmonic nanostructure
array patterns: fabrication, light management and sensing applications.
Nanophotonics. 8: 2065−2089. doi:10.1515/nanoph-2019-0158
-
Ma X, Song S, Kim S, Kwon M S, Lee H, Park W and Sim S J, 2019. Single
gold-bridged nanoprobes for identification of single point DNA mutations.
Nature Commun. 10: 1−13. doi:10.1038/s41467-019-08769-y
-
Striebel M, Wrachtrup J and Gerhardt I, 2017. Absorption and extinction
cross sections and photon streamlines in the optical near-field. Sci. Rep.
7: 1−13. doi:10.1038/s41598-017-15528-w
-
Zaman Q, Souza J, Pandoli O, Costa K Q, Dmitriev V, Fulvio D and Del Rosso
T, 2019. Two-color surface plasmon resonance nanosizer for gold nanoparticles.
Opt. Express. 27: 3200−3216. doi:10.1364/OE.27.003200
-
Mogensen K B and Kneipp K, 2014. Size-dependent shifts of plasmon resonance
in silver nanoparticle films using controlled dissolution: monitoring the
onset of surface screening effects. J. Phys. Chem. C. 118: 28075−28083.
doi:10.1021/jp505632n
-
Lesyuk R, Klein E, Yaremchuk I and Klinke C, 2018. Copper sulfide nanosheets
with shape-tunable plasmonic properties in the NIR region. Nanoscale. 10:
20640−20651. doi:10.1039/C8NR06738D
-
Rao K S, Ganeev R A, Zhang K, Fu Y, Boltaev G S, Maurya S K and Guo C,
2019. Comparative analyses of optical limiting effects in metal nanoparticles
and perovskite nanocrystals. Opt. Mater. 92: 366−372. doi:10.1016/j.optmat.2019.04.058
-
Maier S A. Plasmonics: fundamentals and applications (Springer Science
& Business Media, 2007). doi:10.1007/0-387-37825-1
-
Gramotnev D K and Bozhevolnyi S I, 2014. Nanofocusing of electromagnetic
radiation. Nature Photonics. 8: 13. doi:10.1038/nphoton.2013.232
-
Huang Y, Zhang X, Ringe E, Hou M, Ma L and Zhang Z, 2016. Tunable lattice
coupling of multipole plasmon modes and near-field enhancement in closely
spaced gold nanorod arrays. Sci. Rep. 6: 23159. doi:10.1038/srep23159
-
Zhang Y, Sun H, Zhang S, Li S, Wang X, Zhang X and Guo Z, 2019. Enhancing
luminescence in all-inorganic perovskite surface plasmon light-emitting
diode by incorporating Au-Ag alloy nanoparticle. Opt. Mater. 89: 563−567.
doi:10.1016/j.optmat.2019.01.074
-
Gao Q, Zhang X, Duan L, Li X and Lü W, 2019. Au nanoparticle-decorated
TiO2 nanorod array for plasmon-enhanced quantum dot sensitized solar cells.
Superlatt. Microstruct. 129: 185−192. doi:10.1016/j.spmi.2019.03.028
-
Yang J, Liu Z, Hu Z, Zeng F, Zhang Z, Yao Y and Pi M, 2019. Enhanced single-mode
lasers of all-inorganic perovskite nanocube by localized surface plasmonic
effect from Au nanoparticles. J. Lumin. 208: 402−407. doi:10.1016/j.jlumin.2018.12.055
-
Amendola V, Pilot R, Frasconi M, Marago O M and Iati M A, 2017. Surface
plasmon resonance in gold nanoparticles: a review. J. Phys.: Condens. Matter.
29: 203002. doi:10.1088/1361-648X/aa60f3
-
Lim D K, Barhoumi A, Wylie R G, Reznor G, Langer R S and Kohane D S, 2013.
Enhanced photothermal effect of plasmonic nanoparticles coated with reduced
graphene oxide. Nano Lett. 13: 4075−4079. doi:10.1021/nl4014315
-
Alkilany A M, Lohse S E and Murphy C J, 2012. The gold standard: gold nanoparticle
libraries to understand the nano-bio interface. Acc. Chem. Res. 46: 650−661.
doi:10.1021/ar300015b
-
Smitha S L, Gopchandran K G, Smijesh N and Philip R, 2013. Size-dependent
optical properties of Au nanorods. Prog. Nat. Sci.: Mater. Int. 23: 36−43.
doi:10.1016/j.pnsc.2013.01.005
-
Ming T, Zhao L, Yang Z, Chen H, Sun L, Wang J and Yan C, 2009, Strong polarization
dependence of plasmon-enhanced fluorescence on single gold nanorods. Nano
Lett. 9: 3896−3903. doi:10.1021/nl902095q
-
Lan X and Wang Q, 2016. Self‐assembly of chiral plasmonic nanostructures.
Adv. Mater. 28: 10499−10507. doi:10.1002/adma.201600697
-
Chen H, Shao L, Li Q and Wang J, 2013, Gold nanorods and their plasmonic
properties. Chem. Soc. Rev. 42: 2679−2724. doi:10.1039/C2CS35367A
-
Kravets V G, Kabashin A V, Barnes W L and Grigorenko A N, 2018. Plasmonic
surface lattice resonances: a review of properties and applications. Chem.
Rev. 118: 5912−5951. doi:10.1021/acs.chemrev.8b00243
-
Dong J, Zhao X, Gao W, Han Q, Qi J, Wang Y and Sun M, 2019. Nanoscale vertical
arrays of gold nanorods by self-assembly: Physical mechanism and application.
Nanoscale Res. Lett. 14: 118. doi:10.1186/s11671-019-2946-6
-
Hong S, Shuford K L and Park S, 2011, Shape transformation of gold nanoplates
and their surface plasmon characterization: triangular to hexagonal nanoplates.
Chem. Mater. 23: 2011−2013. doi:10.1021/cm103273c
-
Liu B, Yan H, Stosch R, Wolfram B, Bröring M, Bakin A and Lemmens P, 2017.
Modelling plexcitons of periodic gold nanorod arrays with molecular components.
Nanotechnol. 28: 195201. doi:10.1088/1361-6528/aa67d8
-
Payne E K, Shuford K L, Park S, Schatz G C and Mirkin C A, 2006. Multipole
plasmon resonances in gold nanorod. J. Phys. Chem. B. 110: 2150−2154.
doi:10.1021/jp056606x
-
McMillan B G, Berlouis L E, Cruickshank F R, Pugh D and Brevet P F, 2005.
Transverse and longitudinal surface plasmon resonances of a hexagonal array
of gold nanorods embedded in an alumina matrix. Appl. Phys. Lett. 86: 211912.
doi:10.1063/1.1939070
-
Lee K C, Chen Y H, Lin H Y, Cheng C C, Chen P Y, Wu T Y and Chang C W,
2015. Plasmonic gold nanorods coverage influence on enhancement of the
photoluminescence of two-dimensional MoS2 monolayer. Sci. Rep. 5: 16374.
doi:10.1038/srep16374
-
Chen H, Ming T, Zhang S, Jin Z, Yang B and Wang, J, 2015. Effect of the
dielectric properties of substrates on the scattering patterns of gold
nanorods. ACS Nano. 5: 4865−4877. doi:10.1021/nn200951c
-
Liu Y, Begin-Colin S, Pichon B P, Leuvrey C, Ihiawakrim D, Rastei M and
Bigot J Y, 2014. Two dimensional dipolar coupling in monolayers of silver
and gold nanoparticles on a dielectric substrate. Nanoscale. 6: 12080−12088.
doi:10.1039/C4NR03292F
-
Jia C, Li X, Xin N, Gong Y, Guan J, Meng L and Guo X, 2016. Interface-Engineered
engineered Plasmonics plasmonics in Metalmetal/Semiconductor semiconductor
Heterostructuresheterostructures. Adv. En. Mater. 6: 1600431. doi:10.1002/aenm.201600431
-
Varyshchuk V, Bulavinets T, Yaremchuk I and Bobitski Y, 2018. The shape
effect on the optical properties of metallic nanoparticles. In: 14th International
Conference on Advanced Trends in Radioelecrtronics, Telecommunications
and Computer Engineering (TCSET), p. 458−461. doi:10.1109/TCSET.2018.8336240
-
Bulavinets T, Yaremchuk I, Fitio V and Bobitski Y, 2019. Spectral characteristics
of the titanium dioxide-silver nanoshells under localized surface plasmon
resonance. In: IEEE 2nd Ukrainian Conference on Electrical and Computer
Engineering (UKRCON), p. 762−765. doi:10.1109/UKRCON.2019.8879811
-
Bulavinets T, Yaremchuk I., Fitio V, Barylyak A and Bobitski Y, 2019. Comparison
of spectral characteristics of TiO2@Ag and Ag@TiO2 core-shell nanoparticles.
In: International Conference on Information and Telecommunication Technologies
and Radio Electronics (UkrMiCo), p. 1−4. doi:10.1109/UkrMiCo47782.2019.9165527
-
Bulavinets T, Kulpa-Greszta M, Tomaszewska A, Kus-Liśkiewicz M, Bielatowicz
G, Yaremchuk I, Barylyak A, Bobitski Y and Pązik R, 2020. Efficient NIR
energy conversion of plasmonic silver nanostructures fabricated with the
laser-assisted synthetic approach for endodontic applications. RSC Adv.
10: 38861−38872. doi:10.1039/D0RA06614A
-
Fitio V, Yaremchuk I, Vernyhor O and Bobitski Y, 2018. Resonance of surface-localized
plasmons in a system of periodically arranged gold and silver nanowires
on a dielectric substrate. Appl. Nanosci. 8: 1015−1024. doi:10.1007/s13204-018-0686-z
-
Fitio V, Yaremchuk I and Bobitski Y, 2011. Optical excitation of surface
plasmon polariton and waveguide modes resonances on prismatic structures.
Opt. Applicata. 41: 929−939.
-
Saldan I, Dobrovetska O, Sus L, Makota O, Pereviznyk O, Kuntyi O and Reshetnyak
O, 2018. Electrochemical synthesis and properties of gold nanomaterials.
J. Solid State Electrochem. 22: 637−656. doi:10.1007/s10008-017-3835-5
-
Stankevičius E, Garliauskas M, Laurinavičius L, Trusovas R, Tarasenko
N and Pauliukaitė R, 2019. Engineering electrochemical sensors using nanosecond
laser treatment of thin gold film on ITO glass. Electrochim. Acta. 297:
511−522. doi:10.1016/j.electacta.2018.11.197
-
Sus L, Okhremchuk Y, Saldan I, Kuntyi O, Reshetnyak O and Korniy S, 2015.
Controlled gold deposition by pulse electrolysis. Mater. Lett. 139: 296−299.
doi:10.1016/j.matlet.2014.10.110
-
Kuntyi O I, Sus LV, Kornii S A and Okhremchuk E V, 2016, Electrodeposition
of gold nanoparticles in dimethylformamide solutions of H[AuCl4]. Mater.
Sci. 51: 885−889. doi:10.1007/s11003-016-9917-1
-
Brioude A, Jiang X C and Pileni M P, 2005. Optical properties of gold nanorods:
DDA simulations supported by experiments. J. Phys. Chem. B. 109: 13138−13142.
doi:10.1021/jp0507288
-
Bohren C F and Huffman D R. Absorption and scattering of light by small
particles (John Wiley & Sons, 2008).
-
Dykman L and Khlebtsov N, 2012. Gold nanoparticles in biomedical applications:
recent advances and perspectives. Chem. Soc. Rev. 41: 2256−2282. doi:10.1039/C1CS15166E
-
Prescott S W and Mulvaney P, 2006. Gold nanorod extinction spectra. J.
Appl. Phys. 99: 123504. doi:10.1063/1.2203212
-
https://refractiveindex.info/?shelf=other&book=In2O3-SnO2&page=Konig-EMA
-
König T A, Ledin P A, Kerszulis J, Mahmoud M A, El-Sayed M A, Reynolds
J R and Tsukruk V V, 2014. Electrically tunable plasmonic behavior of nanocube-polymer
nanomaterials induced by a redox-active electrochromic polymer. ACS Nano.
8: 6182−6192. doi:10.1021/nn501601e
-
Prasad P N. Nanophotonics (John Wiley & Sons, 2004).
-
Levy O and Stroud D, 1997. Maxwell Garnett theory for mixtures of anisotropic
inclusions: Application to conducting polymers. Phys. Rev. B. 56: 8035.
doi:10.1103/PhysRevB.56.8035
-
Ruppin R, 2000. Evaluation of extended Maxwell-Garnett theories. Opt. Commun.
182: 273−279. doi:10.1016/S0030-4018(00)00825-7
-
Moerland R J and Hoogenboom J P, 2016. Subnanometer-accuracy optical distance
ruler based on fluorescence quenching by transparent conductors. Optica.
3: 112−117. doi:10.1364/OPTICA.3.000112
(c) Ukrainian Journal
of Physical Optics
|