Ukrainian Journal of Physical Optics 

Volume 22, Issue 1, 2021

Home page

Other articles 

in this issue
Software for design and analysis of multi-pass absorption cells

A. Belina Brzozowski, M. Winkowski, T. Stacewicz

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 
5 Pasteura Street, 02-093 Warsaw, Poland 

Download this article

Abstract. We present interactive calculative approach and relevant software for designing multi-pass optical cells. Our technique performs the analysis of these cells for any sets of concave spherical mirrors and finds the optimal parameters for both laser cavity and optical system that controls laser beam. 

Keywords: laser spectroscopy, trace gas detection, multi-pass cells

UDC: 535.343.4
Ukr. J. Phys. Opt. 22 1-11
doi: 10.3116/16091833/22/1/1/2021
Received: 09.09.2020

Анотація.  Представлено інтерактивний розрахунковий підхід та відповідне програмне забезпечення для проектування багатопрохідних оптичних комірок. Наш метод виконує аналіз таких комірок для будь-яких наборів увігнутих сферичних дзеркал і дає змогу знайти оптимальні параметри і лазерного резонатора, і оптичної системи, яка формує лазерний промінь.

  1. Lizhu Zhang, Guang Tian, Jingsong Li and Benli Yu. 2014. Applications of absorption spectroscopy using quantum cascade lasers. Appl. Spectr. 68: 1095−1107. doi:10.1366/14-00001
  2. Zahniser M S, Nelson D D, McManus J B, Herndon S C, Wood E C, Shorter J H, Lee B H, Santoni G W, Jiménez R, Daube B C, Sunyoung Park, Kort E A and Wofsy S C, 2009. Infrared QC laser applications to field measurements of atmospheric trace gas sources and sinks in environmental research: enhanced capabilities using continuous wave QCLs. Quantum Sensing and Nanophotonic Devices VI. Proc. SPIE. 7222: 1−9. doi:10.1117/12.815172
  3. Kosterev A A, Mosely T S and Tittel F K, 2006. Impact of humidity on quartz-enhanced photoacoustic spectroscopy based detection of HCN. Appl. Phys. B. 85: 295−300. doi:10.1007/s00340-006-2355-2
  4. Elia A, Lugarà P M, Di Franco C and Spagnolo V, 2009. Photoacoustic techniques for trace gas sensing based on semiconductor laser sources. Sensors. 9: 9616−9628. doi:10.3390/s91209616
  5. Wang Chuji and Peeyush Sahay, 2009. Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits. Sensors. 9: 8230−8262. doi:10.3390/s91008230
  6. Harren F J M, Berkelmans R, Kuiper K, te Lintel Hekkert S, Scheepers P, Dekhuijzen R, Hollander P and Parker D H, 1999. On-line laser photoacoustic detection of ethene in exhaled air as biomarker of ultraviolet radiation damage of the human skin. Appl. Phys. Lett. 74: 1761−1763. doi:10.1063/1.123680
  7. Demtröder Wolfgang. Laser spectroscopy. Berlin Heidelberg: Springer-Verlag (1973). doi:10.1007/978-3-642-53859-9
  8. White J U, 1942. Long optical paths of large aperture. J. Opt. Soc. Amer. 32: 285−288. doi:10.1364/JOSA.32.000285
  9. Herriott D, Kogelnik H and Kompfner R. 1964. Off-axis paths in spherical mirror interferometers. Appl. Opt. 3: 523−526. doi:10.1364/AO.3.000523
  10. Altmann J, Baumgart R and Weitkamp C, 1981. Two-mirror multipass absorption cell. Appl. Opt. 20: 995−999. doi:10.1364/AO.20.000995
  11. Herriott D R and Schulte H J, 1965. Folded optical delay lines. Appl. Opt. 4: 883−889. doi:10.1364/AO.4.000883
  12. Kun Liu, Lei Wang, Tu Tan, GuishiWang, Weijun Zhang, Weidong Chen and Xiaoming Gao, 2015. Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell. Sens. Actuat. B: Chemical. 220: 1000−1005. doi:10.1016/j.snb.2015.05.136
  13. Tuzson B, Mangold M, Looser H, Manninen A and Emmenegger L, 2013. Compact multipass optical cell for laser spectroscopy. Opt. Lett. 38: 257−259. doi:10.1364/OL.38.000257
  14. Krzempek K, Jahjah M, Lewicki R, Stefański P, So S, Thomazy D and Tittel F K, 2013. CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell. Appl. Phys. B. 112: 461−465. doi:10.1007/s00340-013-5544-9
  15. Silver J A and Stanton A C, 1988. Optical interference fringe reduction in laser absorption experiments. Appl. Opt. 27: 1914−1916. doi:10.1364/AO.27.001914
  16.  McManus B J and Kebabian P L, 1990. Narrow optical interference fringes for certain setup conditions in multipass absorption cells of the Herriott type. Appl. Opt. 29: 898−900. doi:10.1364/AO.29.000898
  17. Mangold M, Tuzson B and Emmenegger L, 2017. Method for reducing interference fringes in laser spectroscopy measurements using an absorption mask in combination with multi-pass optical cells. U.S. Patent No. 9,638,624. 
  18. Lim Lee, Kwang-Hoon Ko, Taek-Soo Kim and Do-Young Jeong, 2010. Reduction of fringe noise in a multi-pass absorption cell by using the wavelength modulation technique. J. Kor. Phys. Soc. 57: 364−368. doi:10.3938/jkps.57.364
(c) Ukrainian Journal of Physical Optics