Home
page
Other articles
in this issue |
Suppression of hot carriers by nanoporous silicon for improved operation of a solar cell
1 Ašmontas S., 2 Fedorenko L., 2 Vlasiuk V., 2 Gorbanyuk T., 2 Kostylyov V., 2 Lytovchenko V., 1, 3 * Gradauskas J., 1 Sužiedėlis A., 1 Širmulis E., 1 Žalys O. and 3 Masalskyi O.
1Center for Physical Sciences and Technology, Saulėtekio Avenue 3, 10257 Vilnius, Lithuania, info@ftmc.lt
2V. E. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, Nauky Avenue 41, 03028 Kyiv, Ukraine, info@isp.kiev.ua
3Vilnius Gediminas Technical University, Saulėtekio Avenue 11, 10223 Vilnius, Lithuania, vgtu@vgtu.lt
Download this
article
Abstract. The surface of a silicon solar cell is modified to improve its photovoltaic characteristics. Nanostructured porous silicon layer is formed on a front n+-type surface of a p–n junction by means of electrochemical etching accompanied by illumination with a high-power light-emitting diode operating at the wavelength of 365 nm. Addition of the porous layer results in considerable increase in the capacitive photovoltage across the p–n junction. This increase is shown to be stipulated by reduced photonic losses due to anti-reflection coating effect of the porous layer, as well as by decreasing adverse effect of hot carriers on the photovoltage. Broadening of the spectrum of capacitive photovoltage towards the short-wavelength region was observed. This finding is associated with the graded-gap character of the porous layer and photovoltage formation across it as well as with increased absorption of high-energy photons in the porous layer and resulting weaker heating of free carriers.
Keywords: porous silicon, p-n junction, hot carriers, electrochemical etching, graded gap
UDC: 535, 621
Ukr. J. Phys. Opt. 21 207-214
doi: 10.3116/16091833/21/4/207/2020
Received: 06.11.2020
Анотація. Поверхня кремнієвого сонячного елемента була модифікована для поліпшення його фотоелектричних характеристик. На передній n+-типу поверхні p–n переходу був сформований наноструктурований шар пористого кремнію за допомогою електрохімічного травлення, яке супроводжувалося освітленням потужним світлодіодом, що працював на довжині хвилі 365 нм. Додавання пористого шару призводить до значного збільшення ємнісної фотонапруги на p–n переході. Показано, що це збільшення обумовлене зменшенням втрат фотонів внаслідок дії противовідбивного покриття пористого шару, а також зменшенням несприятливого впливу гарячих носіїв на фотонапругу. Виявлено, що розширення спектру ємнісної фотонапруги в короткохвильову область. Це пов’язано зі варизонним характером пористого шару і сформованої фотоелектричної напруги на ньому та збільшенням поглинання високоенергетичних фотонів у пористому шарі та як результат зменшене нагрівання вільних носіїв. |
|
REFERENCES
- Taco-Ugsha M A, Santacruz C P and Espinoza-Montero P J, 2020. Natural dyes from Mortiño (Vaccinium floribundum) as sensitizers in solar cells. Energies. 13: 785-796. doi:10.3390/en13040785
- Yu C, Xu S, Yao J and Han S, 2018. Recent advances in and new perspectives on crystalline silicon solar cells with carrier-selective passivation contacts. Crystals. 8: 430-441. doi:10.3390/cryst8110430
- Sachenko A, Kostylyov V, Sokolovskyi I and Evstigneev M, 2020. Effect of temperature on limit photoconversion efficiency in silicon solar cells. IEEE J. Photovoltaics. doi:10.1109/JPHOTOV.2019.2949418
- Bullock J, Wan Y, Xu Z, Essig S, Hettick M and Wang H, 2018. Stable dopant-free asymmetric heterocontact silicon solar cells with efficiencies above 20%. ACS Energy Lett. 3: 508-513. doi:10.1021/acsenergylett.7b01279
- Ašmontas S, Gradauskas J, Sužiedelis A, Šilėnas A, Širmulis E, Švedas V, Vaičikauskas V and Žalys O, 2018. Hot carrier impact on photovoltage formation in solar cells. Appl. Phys. Lett. 113: 071103. doi:10.1063/1.5043155
- Le Bris A, Lombez L, Laribi S, Boissier G, Cristol P and Guillemoles J-F, 2012. Thermalisation rate study of GaSb-based heterostructures by continuous wave photoluminescence and their potential as hot carrier solar cell absorbers. Energy Environ. Sci. 5: 6225-6232. doi:10.1039/c2ee02843c
- Ross R T and Nozik A J, 1982. Efficiency of hot‐carrier solar energy converters. J. Appl. Phys. 53: 3813-3818. doi:10.1063/1.331124
- Neges M, Schwarzburg K and Willig F, 2017. Monte Carlo simulation of energy loss and collection of hot charge carriers, first step towards a more realistic hot-carrier solar energy converter. Solar Energy Mater. and Solar Cells. 90: 2107-2128.
- Conibeer G J, Köning D, Green M A and Guillemoles J F, 2008. Slowing of carrier cooling in hot carrier solar cells. Thin Solid Films. 516: 6948-6953. doi:10.1016/j.tsf.2007.12.102
- Kempa K, Naughton M J, Ren Z F, Herczynsky A, Kirkpatrick T, Rybczynski J and Gao Y, 2009. Hot electron effect in nanoscopically thin photovoltaic junctions. Appl. Phys. Lett. 95: 233121. doi:10.1063/1.3267144
- Takeda Y and Motohiro T, 2011. Highly efficient solar cells using hot carriers generated by two-step excitation. Solar Energy Mater. and Solar Cells. 95: 2638-2644. doi:10.1016/j.solmat.2011.05.023
- Rodière J, Lombez L, Le Corre A, Durand O and Guillemoles J-F, 2015. Experimental evidence of hot carriers solar cell operation in multi-quantum wells heterostructures. Appl. Phys. Lett. 106: 183901. doi:10.1063/1.4919901
- Prasad A, Balakrishnan S, Jain S K and Jain G S, 1982. Porous silicon oxide anti‐reflection coating for solar cells. J. Electrochem. Soc. 129: 596-599. doi:10.1149/1.2123931
- Menna P, Di Francia G and La Ferrara V, 1995. Porous silicon in solar cells: A review and a description of its application as an AR coating. Solar Energy Mater. and Solar Cells. 129: 13-24. doi:10.1016/0927-0248(94)00193-6
- Lipinski M, Bastide S, Panek P and Levy-Clement C, 2003. Porous silicon antireflection coating by electrochemical and chemical etching for silicon solar cell manufacturing. Phys. Stat. Sol. 197: 512-517. doi:10.1002/pssa.200306555
- Striemer C C and Fauchet P M, 2003. Dynamic etching of silicon for solar cell applications. Phys. Stat. Sol. 197: 502-506. doi:10.1002/pssa.200306553
- Dzhafarov T D, Aslanov S S, Ragimov S H, Sadigov M S and Yuksel S A, 2012. Effect of nanoporous silicon coating on silicon solar cell performance. Vacuum. 86: 1875-1879. doi:10.1016/j.vacuum.2012.04.042
- Bisi O, Ossicini S and Pavesi L, 2000. Porous silicon: a quantum sponge structure for silicon based optoelectronics. Surf. Sci. Rep. 38: 1-126. doi:10.1016/S0167-5729(99)00012-6
- Zhu J, Yu Z, Burhard G F, Hsu C M, Connor S T, Xu Y, Wang Q, McGehee M, Fan Sh and Cui Y, 2009. Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett. 9: 279-282. doi:10.1021/nl802886y
- Lehman V and Föll H, 1990. Formation mechanism and properties of electrochemically etched trenches in n-type silicon. J. Electrochem. Soc. 137: 653-659. doi:10.1149/1.2086525
- Lytovchenko V G, Gorbanyuk T I, Kladko V P, Sarikov A V, Safriuk N V, Fedorenko L L, Ašmontas S, Gradauskas J, Širmulis E and Žalys O, 2017. Preparation and study of porous Si surfaces obtained using the electrochemical method. Semiconduct. Phys. Quant. Electron. and Optoelectron. 20: 385-395. doi:10.15407/spqeo20.04.385
- Dargys A and Kundrotas J. Handbook on physical properties of Ge, Si, GaAs and InP. Vilnius: Science and Encyclopedia Publishers (1994).
- Gelloz B J. Luminescent properties of porous silicon. In Porous silicon: from formation to application: formation and properties. Ed. by G.Korotcenkov, London: CRC Press (2016). doi:10.1201/b19342
- Karpovich I A and Filatov D O, 1996. Diagnostics of the quantum well heterostructures by the capacitive photovoltage spectroscopy method. Semiconductors. 30: 1745-1755.
- Vashpanov Y and Jeong J I, 2010. Optical absorption and photoelectron collection properties of silicon wafers with conical quantum nanocrystals structure. Nano-Micro Lett. 2: 149-153. doi:10.1007/BF03353633
- Gradauskas J, Šatkovskis, E, Česnys, A, Stupakova J, Sužiedėlis A, 2008. Charge carrier heating effect in porous silicon structures investigated by microwaves. Acta Phys.Pol. A 113: 993-996. doi: 10.12693/APhysPolA.113.993
(c) Ukrainian Journal
of Physical Optics |