Ukrainian Journal of Physical Optics 

Volume 21, Issue 4, 2020

Home page
 
 

Other articles 

in this issue
Optical studies of X-ray irradiated (Ga0.4In0.6)2Se3 films

1Studenyak I. P., 1Pop M. M., 2Kranjčec M., and 3Solomon A. M.

1Uzhhorod National University, Uzhhorod, Ukraine, studenyak@dr.com
2University North, Varaždin, Croatia
3Institute of Electron Physics, Uzhhorod, Ukraine

Download this article

Abstract. As-deposited (Ga0.4In0.6)2Se3 films are irradiated using a wide-band radiation of Cu-anode X-ray tube during different exposure times. The spectral dependences of refractive index and extinction coefficient are measured with a spectral ellipsometric technique. The optical transmission spectra of X-ray irradiated (Ga0.4In0.6)2Se3 films are studied depending on the irradiation time. The parameters of Urbach absorption edge for those films are determined. The spectral dependences of refractive indices for both non-irradiated and irradiated (Ga0.4In0.6)2Se3 films are described in the framework of Wemple–DiDomenico model.

Keywords: thin films, spectral ellipsometry, optical transmission spectra, X-ray irradiation, refractive index, pseudogap

UDC: 535.3; 539.21
Ukr. J. Phys. Opt. 21 184-190
doi:10.3116/16091833/21/4/184/2020
Received: 08.09.2020

Анотація.  Свіжовисаджені плівки (Ga0.4In0.6)2Se3 опромінено протягом різних часів експозиції широкосмуговим випромінюванням рентгенівської трубки з Cu-анодом. Спектральні залежності показника заломлення та коефіцієнта екстинкції знайдено за допомогою спектральної еліпсометричної методики. Вивчено спектри оптичного пропускання опромінених плівок (Ga0.4In0.6)2Se3 залежно від часу опромінення. Визначено параметри краю поглинання Урбаха для цих плівок. Спектральні залежності показників заломлення для неопромінених і опромінених плівок (Ga0.4In0.6)2Se3 описано в рамках моделі Вемпля–ДіДоменіко

REFERENCES
  1. Popović S, Čelustka B, Ružić-Toroš Ž and Broz D, 1977. X-ray diffraction study and semiconducting properties of the system Ga2Se3-In2Se3. Phys. Stat. Sol. (a). 41: 255-262. doi:10.1002/pssa.2210410131
  2. Ye J, Yoshida T, Nakamura Y and Nittono O, 1996. Realization of giant optical rotatory power for red and infrared light using III2VI3 compound semiconductor (GaxIn1-x)2Se3. Jap. J. Appl. Phys. 35: 4395-4400. doi:10.1143/JJAP.35.4395
  3. Kranjčec M, Čelustka B, Etlinger B and Desnica D, 1988. The indirect allowed optical transition in (Ga0.3In0.7)2Se3. Phys. Stat. Sol. (a). 109: 329-336. doi:10.1002/pssa.2211090136
  4. Kranjčec M, Desnica D I, Čelustka B, Kovacs Gy Sh and Studenyak I P, 1994. Fundamental optical absorption edge and compositional disorder in 1-(GaxIn1-x)2Se3 single crystals. Phys. Stat. Sol. (a). 144: 223-233. doi:10.1002/pssa.2211440125
  5. Kranjčec M, Studenyak I P and Azhniuk Yu M, 2005. Photoluminescence and optical absorption edge in 1-(GaxIn1-x)2Se3 mixed crystals. Phys. Stat. Sol. (b). 238: 439-450. doi:10.1002/pssb.200540073
  6. Ye J, Yoshida T, Nakamura Y and Nittono O, 1995. Optical activity in the vacancy ordered III2VI3 compound semiconductor (Ga0.3In0.7)2Se3. Appl. Phys. Lett. 67: 3066-3068. doi:10.1063/1.114866
  7. Kranjčec M, Desnica I D, Čelustka B, Borec A N, Kovacs Gy Sh, Hadmashy Z P, Suslikov L M and Studenyak I P, 1996. On some crystal-optic properties of 1-(GaxIn1-x)2Se3 single crystals. Phys. Stat. Sol. (a). 153: 539-546. doi:10.1002/pssa.2211530229
  8. Kranjčec M, Studenyak I P, Suslikov L M, Kovacs Gy Sh and Cerovec E, 2004. Birefringence in g1-(GaxIn1-x)2Se3 single crystals. Opt. Mater. 25: 307-312. doi:10.1016/j.optmat.2003.08.005
  9. Kranjčec M, Desnica I D, Studenyak I P, Čelustka B, Borec A N, Yurkin I M and Kovacs Gy Sh, 1997. Acousto-optic modulator with a (Ga0.4In0.6)2Se3 monocrystal as the active element. Appl. Opt. 36: 490-493. doi:10.1364/AO.36.000490
  10. Studenyak I P, Kranjčec M, Izai V Yu, Studenyak V I, Pop M M and Suslikov L M, 2020. Ellipsometric and spectrometric studies of (Ga0.2In0.8)2Se3 thin film. Ukr. Fiz. Zhurn. 65: 231-235. doi:10.15407/ujpe65.3.231
  11. Studenyak I P, Kranjčec M, Pop M, Studenyak V I, Suslikov L M, Pinaeva O Yu, Komada P, Luganskaya S, Kozhamberdiyeva M and Mussabekova A, 2020. Optical parameters of (Ga0.4In0.6)2Se3 thin film. Proc. SPIE. 11456: 1145605. doi:10.1117/12.2569782
  12. Liang H, Cui S, Su R, Guan P, He Y, Yang L, Chen L, Zhang Y, Mei Z and Du X, 2019. Flexible X-ray detectors based on amorphous Ga2O3 thin films. ACS Photon. 6: 351−359. doi:10.1021/acsphotonics.8b00769
  13. Hendi A A, 2011. Determination and analysis the influence of X-ray irradiation on optical constant of magnesium phthalocyanin. Austral. J. Basic and Appl. Sci. 5: 38-44.
  14. El-Nahass M M, Ammar A H, Atta A A, Farag A A M and El-Zaidia E F M, 2011. Influence of X-ray irradiation on the optical properties of CoMTPP thin films. Opt. Commun. 284: 2259-2263. doi:10.1016/j.optcom.2010.12.032
  15. Khodiri A A, Nawar A M and Abd El-kader K M, 2016. Effect of X-ray irradiation on structural and optical properties of topological insulator bismuth telluride nano-structure thin film. IOSR J. Appl. Phys. 8: 60-68. doi:10.9790/4861-0804046068
  16. Jung Y, Güneş O, Belev G, Cyril Koughia C, Johanson R and Kasap S, 2017. X-ray induced effects in the optical and thermal properties of a-Se1−xAsx (x = 0, 0.005, 0.06) doped with 0-220 ppm Cs. J. Mater. Scie.: Mater. in Electronics. 28: 7139-7150. doi:10.1007/s10854-017-6550-1
  17. Studenyak I P, Kutsyk M M, Bendak A V, Izai V Yu, Kúš P and Mikula M, 2017. Influence of X-ray irradiation on optical absorption edge and refractive index dispersion in Cu6PS5I-based thin film deposited by magnetron sputtering. Semiconductor Physics, Quantum Electronics & Optoelectronics. 20: 246-249. doi:10.15407/spqeo20.02.246
  18. Studenyak I P, Bendak A V, Izai V Y, Studenyak V I, Solomon A M and Kúš P, 2020. Optical absorption and refractive index of X-ray irradiated Cu6PSe5I-based thin film. In: Pogrebnjak A and Bondar O (Eds), Microstructure and Properties of Micro- and Nanoscale Materials, Films, and Coatings (NAP 2019). Springer Proceedings in Physics. 240: 31-36. doi:10.1007/978-981-15-1742-6_4
  19. Poelman D and Smet P F, 2003. Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review. J. Phys. D: Appl. Phys. 36: 1850-1857. doi:10.1088/0022-3727/36/15/316
  20. Wemple S H and Di Domenico M, 1971. Behavior of the dielectric constant in covalent and ionic materials. Phys. Rev. B. 3: 1338-1352. doi:10.1103/PhysRevB.3.1338
  21. Tanaka K, 1980. Optical properties and photoinduced changes in amorphous As-S films. Thin Solid Films. 66: 271-279. doi:10.1016/0040-6090(80)90381-8
  22. Swanepoel R, 1983. Determination of the thickness and optical constants of amorphous silicon. J. Phys. E: Sci. Instrum. 16: 1214-1222. doi:10.1088/0022-3735/16/12/023
  23. Cody G D, Tiedje T, Abeles B, Brooks B and Goldstein Y, 1981. Disorder and the optical-absorption edge of hydrogenated amorphous silicon. Phys. Rev. Lett. 47: 1480-1483. doi:10.1103/PhysRevLett.47.1480
(c) Ukrainian Journal of Physical Optics