Home
page
Other articles
in this issue |
Faraday effect in
TlIn(S1–xSex)2 solid solutions (x =
0, 0.02, 0.06, 0.10, 0.15 and 0.25)
1Adamenko D., 1Krupych
O., 1Kostyrko M., 1Vasylkiv Yu., 1,2Gomonnai
O., 2,3Gomonnai A. and 1Vlokh R.
1Vlokh Institute of Physical Optics, 23 Dragomanov
Street, 79005 Lviv, Ukraine
2Uzhhorod National University, 46 Pidhirna
Street, 88000 Uzhhorod, Ukraine
3Institute of Electron Physics, Ukrainian
National Academy of Sciences, 21 Universytetska Street, 88017 Uzhhorod,
Ukraine
Download this
article
Abstract. We have studied experimentally the Faraday effect in
monoclinic
TlIn(S1-xSex)2 solid solutions with
selenium concentrations x changing in the range 0 ≤ x ≤ 0.25. The Verdet
constant VF and the effective Faraday coefficient F33
are determined at the light wavelength λ = 632.8 nm under normal conditions.
We show that the both coefficients tend to increase when the Se concentration
increases from 0 to 0.25. This behaviour is explained by dispersion of
the Faraday coefficients and a shift of the absorption edge towards long-wavelength
spectral range, which occurs with increasing amount of selenium
Keywords: Faraday effect, Verdet constant,
TlIn(S1-xSex)2
solid solutions
UDC: 537.632.4
Ukr. J. Phys. Opt. 21 178-183
doi: 10.3116/16091833/21/4/178/2020
Received: 11.08.2020
Анотація. ВЕкспериментально
вивчено ефект Фарадея в моноклинних твердих
розчинах TlIn(S1-xSex)2
із концентраціями селену x у межах 0 ≤ x
≤ 0,25. На довжині хвилі світла λ = 632,8 нм за
нормальних умов визначено постійну Верде
VF і ефективний коефіцієнт Фарадея
F33. Показано, що обидва коефіцієнти
мають тенденцію до збільшення за умови
зростання концентрації Se від 0 до 0,25. Така
поведінка пояснюється дисперсією коефіцієнтів
Фарадея та зсувом краю поглинання в бік
довгохвильового спектрального діапазону,
який відбувається зі зростанням вмісту
селену. |
|
REFERENCES
-
Panich A M, 2008. Electronic properties and phase transitions in low-dimensional
semiconductors. J. Phys.: Condens. Matter. 20: 293202. doi:10.1088/0953-8984/20/29/293202
-
Kashida S and Kobayashi Y, 1999. X-ray study of the incommensurate phase
of TlInS2. J. Phys.: Condens. Matter. 11: 1027-1035. doi:10.1088/0953-8984/11/4/010
-
Delgado G E, Mora A J, Perez F V and Gonzalez J, 2007. Crystal structure
of the ternary semiconductor compound thallium gallium sulfide, TlGaS2.
Physica B. 391: 385-388. doi:10.1016/j.physb.2006.10.030
-
Gasanly N M, Mavrin B N, Sterin K E, Tagirov V I and Khalafov Z D, 1978.
Raman study of layer TlGaS2, β-TlInS2, and TlGaSe2 crystals. Phys. Stat.
Sol. (b). 86: K49-K53. doi:10.1002/pssb.2220860162
-
Müller D, Eulenberger G and Hahn H, 1973. Über ternäre Thalliumchalkogenide
mit Thalliumselenidstruktur. Zeitschrift für anorganische und allgemeine
Chemie. 398: 207-220. doi:10.1002/zaac.19733980215
-
Isaacs T J, 1975. Determination of the crystal symmetry of the polymorphs
of thallium indium disulfide, TlInS2. Zeitschrift für Kristallographie
- Cryst. Mater. 141: 104-108. doi:10.1524/zkri.1975.141.1-2.104
-
Aliev R A, Allakhverdiev K R, Baranov A I, Ivanov N R and Sardarly R M,
1984. Ferroelectricity and structural phase transitions in the crystals
of TlInS2 family. Fiz. Tverd. Tela. 26: 1271-1276.
-
Vakhrushev S B, Zhdanova V V, Kvyatkovskii B E, Okuneva N M, Allakhverdiev
K R, Aliev R A and Sardarly R M, 1984. Incommensurate phase transition
in a TlInS2 crystal. JETP Lett. 39: 291-293.
-
Gololobov Y P, Borovoy N A, Isayenko G L and Polovina A I, 2009. Ferroelectric
phases in the polytypes of TlInS2 ternary compound. Phys. Stat. Sol. (c).
6: 989-992. doi:10.1002/pssc.200881150
-
Alekperov O Z, Ibragimov G B, Nadjafov A I and Fakix A R, 2009. Polytypes
in ferroelectric TlInS2 and its dielectric and optic properties. Phys.
Stat. Sol. (c). 6: 977-980. doi:10.1002/pssc.200881193
-
Bakhyshov N A, Gasanly N M, Yavadov B M, Tagirov V I and Efendiev S M,
1979. Mixed one- and two-mode behaviour of optical phonons in TlGaS2xSe2(1-x)
and TlInS2xSe2(1-x) layer solid solutions. Phys. Stat. Sol. (b). 91: K1-K3.
doi:10.1002/pssb.2220910145
-
Gasanly N M, Dzhavadov B M, Tagirov V I and Vinogradov E A, 1979. Long-wave
lattice vibrations of TlInS2xSe2(1-x) and TlGaS2xSe2(1-x) layer solid solutions.
Phys. Stat. Sol. (b). 95: K27-K30. doi:10.1002/pssb.2220950143
-
Allakhverdiev K R, Akhmedzade N D, Tagiev M M, Shirinov M M and Häseler
S, 1988. Long-wavelength IR-active phonons in the TlInS2-TlInSe2 system.
Phys. Stat. Sol. (b). 148: K93-K96. doi:10.1002/pssb.2221480160
-
Seyidov M Y, Suleymanov R A and Salehli F, 2011. Origin of structural instability
in TlInS2xSe2(1-x) solid solutions. Phys. Scripta. 84: 015601. doi:10.1088/0031-8949/84/01/015601
-
Seyidov M H Y, Suleymanov R A and Salehli F, 2009. Effect of the "negative
chemical" pressure on the temperatures of phase transitions in the TlInS2
layered crystal. Phys. Solid State. 51: 2513. doi:10.1134/S1063783409120142
-
Gomonnai A V, Petryshynets I, Azhniuk Y M, Gomonnai O O, Roman I Y, Turok
I I, Solomon A M, Rosul R R and Zahn D R T, 2013. Growth and characterisation
of sulphur-rich TlIn(S1-xSex)2 single crystals. J. Cryst. Growth. 367:
35-41. doi:10.1016/j.jcrysgro.2013.01.008
-
Say A, Martynyuk-Lototska I, Mys O, Adamenko D, Kostyrko M, Gomonani O
and Vlokh R, 2020. Temperature dependences of optical indicatrix and thermal
expansion parameters of TlIn (S1-xSex)2 solid solutions (x = 0, 0.02 and
0.06). Ukr. J. Phys. Opt. 21: 57-64. doi:10.3116/16091833/21/2/57/2020
-
Adamenko D, Say A, Martynyuk-Lototska I, Mys O, Kostyrko M, Gomonnai O
O, Gomonnai A V and Vlokh R, 2020. (X, T)-phase diagram of TlIn (S1-xSex)2
solid solutions (x = 0, 0.02, 0.06, 0.10, 0.15 and 0.25). Temperature dependences
of thermal expansion and optical anisotropy parameters. Phase Trans. 93:
935-944. doi:10.1080/01411594.2020.1813292
-
Adamenko D, Vasylkiv Y, Pogodin A, Kokhan O and Vlokh R, 2017. Faraday
effect in TlInS2 crystals. Ukr. J. Phys. Opt. 18: 197-200. doi:10.3116/16091833/18/4/197/2017
-
Gasanly N M, 2010. Effect of temperature and isomorphic atom substitution
on optical absorption edge of TlInS2xSe2(1-x) mixed crystals (0.25 ≤
x ≤ 1). Cryst. Res. Technol. 45: 525-528. doi:10.1002/crat.200900653
(c) Ukrainian Journal
of Physical Optics |