Ukrainian Journal of Physical Optics 

Volume 21, Issue 4, 2020

Home page
 
 

Other articles 

in this issue
Faraday effect in TlIn(S1–xSex)2 solid solutions (x = 0, 0.02, 0.06, 0.10, 0.15 and 0.25)

1Adamenko D., 1Krupych O., 1Kostyrko M., 1Vasylkiv Yu., 1,2Gomonnai O., 2,3Gomonnai A. and 1Vlokh R.

1Vlokh Institute of Physical Optics, 23 Dragomanov Street, 79005 Lviv, Ukraine
2Uzhhorod National University, 46 Pidhirna Street, 88000 Uzhhorod, Ukraine
3Institute of Electron Physics, Ukrainian National Academy of Sciences, 21 Universytetska Street, 88017 Uzhhorod, Ukraine

Download this article

Abstract. We have studied experimentally the Faraday effect in monoclinic 
TlIn(S1-xSex)2 solid solutions with selenium concentrations x changing in the range 0 ≤ x ≤ 0.25. The Verdet constant VF and the effective Faraday coefficient F33  are determined at the light wavelength λ = 632.8 nm under normal conditions. We show that the both coefficients tend to increase when the Se concentration increases from 0 to 0.25. This behaviour is explained by dispersion of the Faraday coefficients and a shift of the absorption edge towards long-wavelength spectral range, which occurs with increasing amount of selenium

Keywords: Faraday effect, Verdet constant, TlIn(S1-xSex)2 solid solutions

UDC: 537.632.4
Ukr. J. Phys. Opt. 21 178-183
doi: 10.3116/16091833/21/4/178/2020
Received: 11.08.2020

Анотація.  ВЕкспериментально вивчено ефект Фарадея в моноклинних твердих розчинах TlIn(S1-xSex)2  із концентраціями селену x у межах 0 ≤ x ≤ 0,25. На довжині хвилі світла λ = 632,8 нм за нормальних умов визначено постійну Верде VF і ефективний коефіцієнт Фарадея  F33. Показано, що обидва коефіцієнти мають тенденцію до збільшення за умови зростання концентрації Se від 0 до 0,25. Така поведінка пояснюється дисперсією коефіцієнтів Фарадея та зсувом краю поглинання в бік довгохвильового спектрального діапазону, який відбувається зі зростанням вмісту селену.

REFERENCES
  1. Panich A M, 2008. Electronic properties and phase transitions in low-dimensional semiconductors. J. Phys.: Condens. Matter. 20: 293202. doi:10.1088/0953-8984/20/29/293202
  2. Kashida S and Kobayashi Y, 1999. X-ray study of the incommensurate phase of TlInS2. J. Phys.: Condens. Matter. 11: 1027-1035. doi:10.1088/0953-8984/11/4/010
  3. Delgado G E, Mora A J, Perez F V and Gonzalez J, 2007. Crystal structure of the ternary semiconductor compound thallium gallium sulfide, TlGaS2. Physica B. 391: 385-388. doi:10.1016/j.physb.2006.10.030
  4. Gasanly N M, Mavrin B N, Sterin K E, Tagirov V I and Khalafov Z D, 1978. Raman study of layer TlGaS2, β-TlInS2, and TlGaSe2 crystals. Phys. Stat. Sol. (b). 86: K49-K53. doi:10.1002/pssb.2220860162
  5. Müller D, Eulenberger G and Hahn H, 1973. Über ternäre Thalliumchalkogenide mit Thalliumselenidstruktur. Zeitschrift für anorganische und allgemeine Chemie. 398: 207-220. doi:10.1002/zaac.19733980215
  6. Isaacs T J, 1975. Determination of the crystal symmetry of the polymorphs of thallium indium disulfide, TlInS2. Zeitschrift für Kristallographie - Cryst. Mater. 141: 104-108. doi:10.1524/zkri.1975.141.1-2.104 
  7. Aliev R A, Allakhverdiev K R, Baranov A I, Ivanov N R and Sardarly R M, 1984. Ferroelectricity and structural phase transitions in the crystals of TlInS2 family. Fiz. Tverd. Tela. 26: 1271-1276.
  8. Vakhrushev S B, Zhdanova V V, Kvyatkovskii B E, Okuneva N M, Allakhverdiev K R, Aliev R A and Sardarly R M, 1984. Incommensurate phase transition in a TlInS2 crystal. JETP Lett. 39: 291-293.
  9. Gololobov Y P, Borovoy N A, Isayenko G L and Polovina A I, 2009. Ferroelectric phases in the polytypes of TlInS2 ternary compound. Phys. Stat. Sol. (c). 6: 989-992. doi:10.1002/pssc.200881150
  10. Alekperov O Z, Ibragimov G B, Nadjafov A I and Fakix A R, 2009. Polytypes in ferroelectric TlInS2 and its dielectric and optic properties. Phys. Stat. Sol. (c). 6: 977-980. doi:10.1002/pssc.200881193
  11. Bakhyshov N A, Gasanly N M, Yavadov B M, Tagirov V I and Efendiev S M, 1979. Mixed one- and two-mode behaviour of optical phonons in TlGaS2xSe2(1-x) and TlInS2xSe2(1-x) layer solid solutions. Phys. Stat. Sol. (b). 91: K1-K3. doi:10.1002/pssb.2220910145
  12. Gasanly N M, Dzhavadov B M, Tagirov V I and Vinogradov E A, 1979. Long-wave lattice vibrations of TlInS2xSe2(1-x) and TlGaS2xSe2(1-x) layer solid solutions. Phys. Stat. Sol. (b). 95: K27-K30. doi:10.1002/pssb.2220950143
  13. Allakhverdiev K R, Akhmedzade N D, Tagiev M M, Shirinov M M and Häseler S, 1988. Long-wavelength IR-active phonons in the TlInS2-TlInSe2 system. Phys. Stat. Sol. (b). 148: K93-K96. doi:10.1002/pssb.2221480160
  14. Seyidov M Y, Suleymanov R A and Salehli F, 2011. Origin of structural instability in TlInS2xSe2(1-x) solid solutions. Phys. Scripta. 84: 015601. doi:10.1088/0031-8949/84/01/015601
  15. Seyidov M H Y, Suleymanov R A and Salehli F, 2009. Effect of the "negative chemical" pressure on the temperatures of phase transitions in the TlInS2 layered crystal. Phys. Solid State. 51: 2513. doi:10.1134/S1063783409120142
  16. Gomonnai A V, Petryshynets I, Azhniuk Y M, Gomonnai O O, Roman I Y, Turok I I, Solomon A M, Rosul R R and Zahn D R T, 2013. Growth and characterisation of sulphur-rich TlIn(S1-xSex)2 single crystals. J. Cryst. Growth. 367: 35-41. doi:10.1016/j.jcrysgro.2013.01.008
  17. Say A, Martynyuk-Lototska I, Mys O, Adamenko D, Kostyrko M, Gomonani O and Vlokh R, 2020. Temperature dependences of optical indicatrix and thermal expansion parameters of TlIn (S1-xSex)2 solid solutions (x = 0, 0.02 and 0.06). Ukr. J. Phys. Opt. 21: 57-64. doi:10.3116/16091833/21/2/57/2020
  18. Adamenko D, Say A, Martynyuk-Lototska I, Mys O, Kostyrko M, Gomonnai O O, Gomonnai A V and Vlokh R, 2020. (X, T)-phase diagram of TlIn (S1-xSex)2 solid solutions (x = 0, 0.02, 0.06, 0.10, 0.15 and 0.25). Temperature dependences of thermal expansion and optical anisotropy parameters. Phase Trans. 93: 935-944. doi:10.1080/01411594.2020.1813292
  19. Adamenko D, Vasylkiv Y, Pogodin A, Kokhan O and Vlokh R, 2017. Faraday effect in TlInS2 crystals. Ukr. J. Phys. Opt. 18: 197-200. doi:10.3116/16091833/18/4/197/2017
  20. Gasanly N M, 2010. Effect of temperature and isomorphic atom substitution on optical absorption edge of TlInS2xSe2(1-x) mixed crystals (0.25 ≤ x ≤ 1). Cryst. Res. Technol. 45: 525-528. doi:10.1002/crat.200900653
(c) Ukrainian Journal of Physical Optics