Ukrainian Journal of Physical Optics 

Volume 21, Issue 4, 2020

Home page

Other articles 

in this issue
Picosecond-laser processing of stainless steel for fabricating superhydrophobic surfaces

1Dupliak I., 1Yuchen Liang, 1Guozhu Yan, 1*Fenping Li, 2Ivaniuk K. and 3Xiaogang Li

1Wenzhou University Institute of Laser and Optoelectronic Intelligent  Manufacturing, Ocean Science and Technology Innovation Park, No. 19 Binhai 3rd Road, Yongxing Street, Longwan District, Wenzhou, Zhejiang, China
2Lviv Polytechnic National University, 12 S. Bandera Street, 79013 Lviv, Ukraine.
3Lyncwell Innovation Intelligent System (Zhejiang) Co., Ltd., Ocean Science and Technology Innovation Park, No. 19 Binhai 3rd Road, Yongxing Street, Longwan District, Wenzhou, Zhejiang, China

Download this article

Abstract. We create a high-precision surface microstructure at the surfaces of SAE 304 stainless steel plates, using picosecond-laser pulses with high repetition rates. The surfaces acquire cross-groove patterns due to a line-by-line laser ablation technology. The wettability of the microstructured metal surface is studied. The microstructured surface provides a superhydrophobicity with good anticorrosion and antibacterial properties, which can extend significantly the scope of applications of the underlying material

Keywords: picosecond lasers, superhydrophobicity, stainless steel, wettability

UDC: 535.21
Ukr. J. Phys. Opt. 21 171-177
doi: 10.3116/16091833/21/4/170/2020
Received: 11.08.2020

Анотація.  Використовуючи пікосекундні лазерні імпульси з високою швидкістю повторення, ми створили високоточну мікроструктуру на поверхнях пластинок з нержавіючої сталі SAE 304. Завдяки технології порядкової лазерної абляції поверхням надано форму поперечних канавок. Вивчено змочуваність мікроструктурованих металевих поверхонь. Мікроструктурована поверхня забезпечує надгідрофобність з хорошими антикорозійними та антибактеріальними властивостями, що може значно розширити сфери застосування основного матеріалу.

  1. Ivanov Y F, Gromov V E and Konovalov S V, 2009. Electron-beam modification of the pearlite steel. Arab. J. Sci & Engin. 34: 219-229.
  2. Konovalov S V, Kormyshev V E, Gromov V E, Ivanov Yu F, Kapralov E V and Semin A P, 2016. Formation features of structure-phase states of Cr-Nb-C-V containing coatings on martensitic steel. J. Synch. Investig. 10: 1119-1124. doi:10.1134/S1027451016050098
  3. Zhang E, Wang Y, Lv T, Li L, Cheng Z and Liu Y, 2015. Bio-inspired design of hierarchical PDMS microstructures with tunable adhesive superhydrophobicity. Nanoscale. 7: 6151-6158. doi:10.1039/C5NR00356C
  4. Esmailzadeh S, Khorsand S, Raeissi K and Ashrafizadeh F, 2015. Microstructural evolution and corrosion resistance of super-hydrophobic electrodeposited nickel films. Surf. Coat. Techn. 283: 337-346. doi:10.1016/j.surfcoat.2015.11.005
  5. Cai Y, Chang W, Luo X and Qin Y, 2019. Superhydrophobicity of microstructured surfaces on zirconia by nanosecond pulsed laser. J. Microman. 2: 5-14. doi:10.1177/2516598418799933
  6. Pan Q, Cao Y, Xue W, Zhu D and Liu W, 2019. Picosecond laser-textured stainless steel superhydrophobic surface with an antibacterial adhesion property. Langmuir. 35: 11414-11421. doi:10.1021/acs.langmuir.9b01333
  7. Long J, Zhong M, Zhang H and Fan P, 2015. Superhydrophilicity to superhydrophobicity transition of picosecond laser microstructured aluminum in ambient air. J. Colloid. Interface. Sci. 441: 1-9. doi:10.1016/j.jcis.2014.11.015
  8. Jiang T, Koch J, Unger C, Fadeeva E, Koroleva A, Zhao Q and Chichkov B N, 2012. Ultrashort picosecond laser processing of micro-molds for fabricating plastic parts with superhydrophobic surfaces. Appl. Phys. A. 108: 863-869. doi:10.1007/s00339-012-6985-4
  9. Yong J, Chen F, Yang Q, Farooq U and Hou X, 2015. Photoinduced switchable underwater superoleophobicity-superoleophilicity on laser modified titanium surfaces. J. Mat. Chem. A. 3: 10703-10709. doi:10.1039/C5TA01782C
  10. Di Giulio S, Faraldi P, Russo N, Fino D, Saracco G and Specchia V, 2009. Photo-catalytic coating of polystyrene for household cooling appliances with self cleaning surfaces. J. Appl. Electrochem. 39: 2265-2273. doi:10.1007/s10800-009-9858-6
  11. Huang L, Lau S P, Yang H Y, Leong E S P, Yu S F and Prawer S, 2005. Stable superhydrophobic surface via carbon nanotubes coated with a ZnO thin film. J. Phys. Chem. B. 109: 7746-7748. doi:10.1021/jp046549s
  12. Chun D M, Ngo C V and Lee K M, 2016. Fast fabrication of superhydrophobic metallic surface using nanosecond laser texturing and low-temperature annealing. CIRP Annals. 65: 519-522. doi:10.1016/j.cirp.2016.04.019
  13. Ta V D, Dunn A, Wasley T J, Li J, Kay R W, Stringer J, Smith P J, Esenturk E, Connaughton C and Shephard J D, 2016. Laser textured superhydrophobic surfaces and their applications for homogeneous spot deposition. Appl. Surf. Sci. 365: 153-159. doi:10.1016/j.apsusc.2016.01.019
  14. Milles S, Soldera M, Voisiat B and Lasagni AF, 2019. Fabrication of superhydrophobic and ice-repellent surfaces on pure aluminium using single and multiscaled periodic textures. Sci. Rep. 9: 13944. doi:10.1038/s41598-019-49615-x
  15. Cheng Y T, Rodak D E, Wong C A and Hayden C A, 2006. Effects of micro- and nano-structures on the self-cleaning behaviour of lotus leaves. Nanotechnol. 17: 1359. doi:10.1088/0957-4484/17/5/032
(c) Ukrainian Journal of Physical Optics