Home
page
Other articles
in this issue |
Picosecond-laser
processing of stainless steel for fabricating superhydrophobic surfaces
1Dupliak I., 1Yuchen
Liang, 1Guozhu Yan, 1*Fenping Li, 2Ivaniuk
K. and 3Xiaogang Li
1Wenzhou University Institute of Laser and
Optoelectronic Intelligent Manufacturing, Ocean Science and Technology
Innovation Park, No. 19 Binhai 3rd Road, Yongxing Street, Longwan District,
Wenzhou, Zhejiang, China
2Lviv Polytechnic National University, 12
S. Bandera Street, 79013 Lviv, Ukraine.
3Lyncwell Innovation Intelligent System (Zhejiang)
Co., Ltd., Ocean Science and Technology Innovation Park, No. 19 Binhai
3rd Road, Yongxing Street, Longwan District, Wenzhou, Zhejiang, China
Download this
article
Abstract. We create a high-precision surface microstructure at
the surfaces of SAE 304 stainless steel plates, using picosecond-laser
pulses with high repetition rates. The surfaces acquire cross-groove patterns
due to a line-by-line laser ablation technology. The wettability of the
microstructured metal surface is studied. The microstructured surface provides
a superhydrophobicity with good anticorrosion and antibacterial properties,
which can extend significantly the scope of applications of the underlying
material
Keywords: picosecond lasers, superhydrophobicity,
stainless steel, wettability
UDC: 535.21
Ukr. J. Phys. Opt. 21 171-177
doi: 10.3116/16091833/21/4/170/2020
Received: 11.08.2020
Анотація. Використовуючи
пікосекундні лазерні імпульси з високою
швидкістю повторення, ми створили високоточну
мікроструктуру на поверхнях пластинок
з нержавіючої сталі SAE 304. Завдяки технології
порядкової лазерної абляції поверхням
надано форму поперечних канавок. Вивчено
змочуваність мікроструктурованих металевих
поверхонь. Мікроструктурована поверхня
забезпечує надгідрофобність з хорошими
антикорозійними та антибактеріальними
властивостями, що може значно розширити
сфери застосування основного матеріалу. |
|
REFERENCES
-
Ivanov Y F, Gromov V E and Konovalov S V, 2009. Electron-beam modification
of the pearlite steel. Arab. J. Sci & Engin. 34: 219-229.
-
Konovalov S V, Kormyshev V E, Gromov V E, Ivanov Yu F, Kapralov E V and
Semin A P, 2016. Formation features of structure-phase states of Cr-Nb-C-V
containing coatings on martensitic steel. J. Synch. Investig. 10: 1119-1124.
doi:10.1134/S1027451016050098
-
Zhang E, Wang Y, Lv T, Li L, Cheng Z and Liu Y, 2015. Bio-inspired design
of hierarchical PDMS microstructures with tunable adhesive superhydrophobicity.
Nanoscale. 7: 6151-6158. doi:10.1039/C5NR00356C
-
Esmailzadeh S, Khorsand S, Raeissi K and Ashrafizadeh F, 2015. Microstructural
evolution and corrosion resistance of super-hydrophobic electrodeposited
nickel films. Surf. Coat. Techn. 283: 337-346. doi:10.1016/j.surfcoat.2015.11.005
-
Cai Y, Chang W, Luo X and Qin Y, 2019. Superhydrophobicity of microstructured
surfaces on zirconia by nanosecond pulsed laser. J. Microman. 2: 5-14.
doi:10.1177/2516598418799933
-
Pan Q, Cao Y, Xue W, Zhu D and Liu W, 2019. Picosecond laser-textured stainless
steel superhydrophobic surface with an antibacterial adhesion property.
Langmuir. 35: 11414-11421. doi:10.1021/acs.langmuir.9b01333
-
Long J, Zhong M, Zhang H and Fan P, 2015. Superhydrophilicity to superhydrophobicity
transition of picosecond laser microstructured aluminum in ambient air.
J. Colloid. Interface. Sci. 441: 1-9. doi:10.1016/j.jcis.2014.11.015
-
Jiang T, Koch J, Unger C, Fadeeva E, Koroleva A, Zhao Q and Chichkov B
N, 2012. Ultrashort picosecond laser processing of micro-molds for fabricating
plastic parts with superhydrophobic surfaces. Appl. Phys. A. 108: 863-869.
doi:10.1007/s00339-012-6985-4
-
Yong J, Chen F, Yang Q, Farooq U and Hou X, 2015. Photoinduced switchable
underwater superoleophobicity-superoleophilicity on laser modified titanium
surfaces. J. Mat. Chem. A. 3: 10703-10709. doi:10.1039/C5TA01782C
-
Di Giulio S, Faraldi P, Russo N, Fino D, Saracco G and Specchia V, 2009.
Photo-catalytic coating of polystyrene for household cooling appliances
with self cleaning surfaces. J. Appl. Electrochem. 39: 2265-2273. doi:10.1007/s10800-009-9858-6
-
Huang L, Lau S P, Yang H Y, Leong E S P, Yu S F and Prawer S, 2005. Stable
superhydrophobic surface via carbon nanotubes coated with a ZnO thin film.
J. Phys. Chem. B. 109: 7746-7748. doi:10.1021/jp046549s
-
Chun D M, Ngo C V and Lee K M, 2016. Fast fabrication of superhydrophobic
metallic surface using nanosecond laser texturing and low-temperature annealing.
CIRP Annals. 65: 519-522. doi:10.1016/j.cirp.2016.04.019
-
Ta V D, Dunn A, Wasley T J, Li J, Kay R W, Stringer J, Smith P J, Esenturk
E, Connaughton C and Shephard J D, 2016. Laser textured superhydrophobic
surfaces and their applications for homogeneous spot deposition. Appl.
Surf. Sci. 365: 153-159. doi:10.1016/j.apsusc.2016.01.019
-
Milles S, Soldera M, Voisiat B and Lasagni AF, 2019. Fabrication of superhydrophobic
and ice-repellent surfaces on pure aluminium using single and multiscaled
periodic textures. Sci. Rep. 9: 13944. doi:10.1038/s41598-019-49615-x
-
Cheng Y T, Rodak D E, Wong C A and Hayden C A, 2006. Effects of micro-
and nano-structures on the self-cleaning behaviour of lotus leaves. Nanotechnol.
17: 1359. doi:10.1088/0957-4484/17/5/032
(c) Ukrainian Journal
of Physical Optics |