Home
page
Other articles
in this issue |
Temperature behaviour
of the photoluminescence spectra of polycrystalline ZnSe films with different
surface treatment
1Abbasov I., 1Musayev
M., 2Huseynov J., 3Kostyrko M., 4Eyyubov
G. and 1Askerov D.
1Azerbaijan State Oil and Industry University,
20 Azadlig Street, 1010 Baku, Azerbaijan
2Azerbaijan State Pedagogical University,
68 Uzeyir Hajibeyli Street, 1000 Baku, Azerbaijan
3O. G. Vlokh Institute of Physical Optics,
23 Dragomanov Street, 79005 Lviv, Ukraine
4Institute of Physics of the NAS of Azerbaijan,
33 Huseyn Javid Avenue, 1141 Baku, Azerbaijan
Download this
article
Abstract. We present the photoluminescence spectra obtained in
the case of normal incidence of exciting radiation at both polished and
unpolished surfaces of chemical-vapour deposited ZnSe films in the temperature
range 12–300 K. The luminescence has been excited using either a continuous-wave
He–Cd laser with the wavelength λex = 325 nm (i.e., under
the condition hvex > Eg for the photon
energy) or a semiconductor laser with λex = 532 nm (i.e., hvex
< Eg). We show that the temperature dependences of intensity,
spectral position and half-width of a green photoluminescence band detected
in the both alternative cases are very different in the region 12–80
K. However, their behaviours become very close to each other when the temperature
increases up to 180 K. Finally, the above spectral parameters are almost
the same in the region 180–300 K.
Keywords: zinc selenide, polycrystals, chemical
vapour deposition, photoluminescence spectra
UDC: 535.37
Ukr. J. Phys. Opt. 21 159-170
doi: 10.3116/16091833/21/3/159/2020
Received: 02.07.2020
Анотація. Представлено спектри
фотолюмінесценції, одержані в діапазоні
температур 12–300 К за умов нормального падіння
збуджуючого випромінювання на відполіровану
або невідполіровану поверхню плівок ZnSe,
хімічно висаджених з парової фази. Люмінесценцію
збуджували за допомогою He–Cd лазера безперервної
дії з довжиною хвилі λex = 325 нм (тобто,
за умови hνex > Eg для енергії
фотона) або напівпровідникового лазера
з λex = 532 нм (тобто, hνex < Eg).
Показано, що температурні залежності інтенсивності,
спектрального положення та напівширини
зеленої смуги фотолюмінесценції, знайдені
для обох альтернативних випадків, сильно
відрізняються в області 12–80 К. Однак їхня
поведінка стає дуже близькою, якщо температура
зростає до 180 К. Нарешті, вищевказані спектральні
параметри майже однакові в області 180–300
К. |
|
REFERENCES
-
Nedeoglo D D and Simashkevich A V. Electric and luminescent properties
of zinc selenide. Kishinyov: Shtiintsa (1984).
-
Georgobiani A N and Sheynkman M K. The physics of AIIBVI compounds. Moscow:
Nauka (1986).
-
Gavrilenko V I, Grekhov A M, Korbutyak D V and Litovchenko V G. Optical
properties of semiconductors: handbook. Kiyev: Naukova dumka (1987).
-
Peter Yu Yu and Kardona M. Fundamentals of semiconductors. Moscow: Fizmatlit
(2002).
-
Li Huan-Yong, Jie Wan-Qi, Zhang Shi-An, Sun Zhen-Rong and Xu Ke-Wei, 2006.
The photoluminescence of ZnSe bulk single crystals excited by femtosecond
pulse. Chin. Phys. 15: 2407–2414. doi:10.1088/1009-1963/15/10/037
-
Kishida S, Matsuura К, Mori Н, Mizuguchi Y and Tsurumi I, 1988. Temperature
dependence of the 2.5 eV emission band in Se-treated ZnSe crystals. Phys.
Stat. Sol. (a). 109: 617–623. doi:10.1002/pssa.2211090230
-
Kishida S, Matsuura K and Matsuoka A, 1988. The transient behaviors of
the 2.5 eV emission band in Se-treated ZnSe crystals. Phys. Stat. Sol.
(a). 105: 165–168. doi:10.1002/pssa.2211050261
-
Vaksman Yu F, 1995. Radiative recombination in oxygen-activated zinc selenide
single crystals. Semiconductors. 29: 346–348.
-
Vil'chinskaya S S, Oleshko V I and Gorina S G, 2011. Low-temperature luminescence
of zinc selenide crystals grown by various methods. Izv. Vuzov: Ser. Fiz.
54: 138–142.
-
Mideros D A. Optical properties of AIIBVI compounds with an isoelectronic
admixture of oxygen from the standpoint of the theory of disjoint zones
(on the example of the ZnS–ZnSe system). Abstract. Moscow: Moscow Power
Engineering Institute (Technical University) (2008).
-
Makhniy V P, Kinzerskaya O V, Senko I M and Slotov A M, 2016. High temperature
luminescence of ZnSe:Yb crystals. Technology and Design in Electronic Equipment.
2–3: 37–40. doi:10.15222/TKEA2016.2-3.37
-
Vaksman Yu F, Nitsuk Yu A, Yatsun V V, Nasibov A S and Shapkin P V, 2011.
Effect of iron impurities on the photoluminescence and photoconductivity
of ZnSe crystals in the visible spectral region. Semiconductors. 45: 1129–1132.
doi:10.1134/S1063782611090235
-
Abrams B L and Holloway P H, 2004. Role of the surface in luminescent processes.
Chem. Rev. 104: 5783–5802. doi:10.1021/cr020351r
-
Manhas M, Vinay Kumar, Ntwaeaborwa O M and Swart H C, 2016. Structural,
surface and luminescence properties of Ca3B2O6:Dy3+ phosphors. Ceramics
International. 42: 5743–5753. doi:10.1016/j.ceramint.2015.12.107
-
Abbasov I, Musayev M, Huseynov J, Kostyrko M, Babayev S, Eyyubov G and
Aliyeva S, 2020. Photoluminescence spectra of polycrystalline ZnSe in different
experimental geometries. Ukr. J. Phys. Opt. 21: 103–114. doi:10.3116/16091833/21/2/103/2020
-
Devyatykh G G, Gavrishchuk Ye M and Dadanov A Yu, 1990. Study of the kinetics
of zinc selenide chemical deposition from the gas phase in a horizontal
flow reactor. High-Purity Substances. 2: 174–179.
-
Hartman H, Hildisch L, Krause E and Mohling W, 1991. Morphological stability
and crystal structure of CVD grown zinc selenide. J. Mater. Sci. 26: 4917–4923.
doi:10.1007/BF00549871
-
Philipose U, Yang S, Xu T and Harry E Ruda, 2007. Origin of the red luminescence
band in photoluminescence spectra of ZnSe nanowires. Appl. Phys. Lett.
90: 063103. doi:10.1063/1.2457190
-
Morozova N K and Miroshnikova I N, 2020. Anomalous edge emission from zinc
selenide heavily doped with oxygen. Semiconductors. 54: 59–64. doi:10.1134/S1063782620010169
-
Saxena A, Yang S, Philipose U and Ruda H E, 2008. Excitonic and pair-related
photoluminescence in ZnSe nanowires. J. Appl. Phys. 103: 053109 (1–7).
doi:10.1063/1.2885729
-
Morozova N K, Mideros D A, Gavrishchuk E M and Galstyan V G, 2008. Role
of background O and Cu impurities in the optics of ZnSe crystals in the
context of the band anticrossing model. Semiconductors. 42: 131–136.
doi:10.1134/S1063782608020024
-
Triboulet R and Siffert P. CdTe and related compounds; physics, defects,
hetero- and nanostructures, crystal growth surfaces and applications. Oxford:
Elsevier (2010).
-
Alizadeh M and Degoda V Ya, 2018. The spectra of X-ray and photoluminescence
of high-resistance crystals of ZnSe. Ukr. J. Phys. 63: 557–562. doi:10.15407/ujpe63.6.557
-
Morozova N K, Karetnikov I A, Blinov V V and Gavrishchuk E M, 2001. Studies
of the infrared luminescence of ZnSe doped with copper and oxygen. Semiconductors.
35: 512–515. doi:10.1134/1.1371612
-
Degoda V Ya, Pavlova N Yu, Podust G P and Sofiienko A O, 2015. Spectral
structure of the X-ray stimulated phosphorescence of monocrystalline ZnSe.
Physica B. 465: 1–6. doi:10.1016/j.physb.2015.02.021
-
Alizadeh M, Degoda V Ya, Kozhushko B V and Pavlova N Yu, 2017. Luminescence
of dipole-centers in ZnSe crystals. Funct. Mater. 24: 206–211. doi:10.15407/fm24.02.206
-
Alizadeh M and Degoda V Ya, 2018. The spectra of X-ray and photoluminescence
of high-resistance crystals of ZnSe. Ukr. J. Phys. 63: 557–562. doi:10.15407/ujpe63.6.557
-
Ivanova G N, Kasiyan V A, Nedeoglo D D and Oprya S V, 1998. The influence
of copper doping method of n-ZnSe crystals on the structure of radiative
centres of long-wave luminescence. Semiconductors. 32: 171–177. doi:10.1134/1.1187337
-
Thomas A E, Russel G J and Woods J, 1984. Self-activated emission in ZnS
and ZnSe. J. Phys. C. 17: 6219–6228. doi:10.1088/0022-3719/17/34/022
-
Skobeeva V M, Serdyuk V V, Semenyuk L N and Malushin N V, 1986. Influence
of technological conditions upon the luminescence properties of ZnTe–ZnSe
heterostructures grown by liquid-phase epitaxy. J. Appl. Spectrosc. 44:
243–246. doi:10.1007/BF00660356
(c) Ukrainian Journal
of Physical Optics |