Ukrainian Journal of Physical Optics 

Volume 21, Issue 3, 2020

Home page
 
 

Other articles 

in this issue
Temperature behaviour of the photoluminescence spectra of polycrystalline ZnSe films with different surface treatment

1Abbasov I., 1Musayev M., 2Huseynov J., 3Kostyrko M., 4Eyyubov G. and 1Askerov D.

1Azerbaijan State Oil and Industry University, 20 Azadlig Street, 1010 Baku, Azerbaijan
2Azerbaijan State Pedagogical University, 68 Uzeyir Hajibeyli Street, 1000 Baku, Azerbaijan
3O. G. Vlokh Institute of Physical Optics, 23 Dragomanov Street, 79005 Lviv, Ukraine
4Institute of Physics of the NAS of Azerbaijan, 33 Huseyn Javid Avenue, 1141 Baku, Azerbaijan

Download this article

Abstract. We present the photoluminescence spectra obtained in the case of normal incidence of exciting radiation at both polished and unpolished surfaces of chemical-vapour deposited ZnSe films in the temperature range 12–300 K. The luminescence has been excited using either a continuous-wave He–Cd laser with the wavelength λex = 325 nm (i.e., under the condition hvex > Eg for the photon energy) or a semiconductor laser with λex = 532 nm (i.e., hvex < Eg). We show that the temperature dependences of intensity, spectral position and half-width of a green photoluminescence band detected in the both alternative cases are very different in the region 12–80 K. However, their behaviours become very close to each other when the temperature increases up to 180 K. Finally, the above spectral parameters are almost the same in the region 180–300 K.

Keywords: zinc selenide, polycrystals, chemical vapour deposition, photoluminescence spectra

UDC: 535.37
Ukr. J. Phys. Opt. 21 159-170
doi: 10.3116/16091833/21/3/159/2020
Received: 02.07.2020

Анотація.  Представлено спектри фотолюмінесценції, одержані в діапазоні температур 12–300 К за умов нормального падіння збуджуючого випромінювання на відполіровану або невідполіровану поверхню плівок ZnSe, хімічно висаджених з парової фази. Люмінесценцію збуджували за допомогою He–Cd лазера безперервної дії з довжиною хвилі λex = 325 нм (тобто, за умови hνex > Eg для енергії фотона) або напівпровідникового лазера з λex = 532 нм (тобто, hνex < Eg). Показано, що температурні залежності інтенсивності, спектрального положення та напівширини зеленої смуги фотолюмінесценції, знайдені для обох альтернативних випадків, сильно відрізняються в області 12–80 К. Однак їхня поведінка стає дуже близькою, якщо температура зростає до 180 К. Нарешті, вищевказані спектральні параметри майже однакові в області 180–300 К.

REFERENCES
  1. Nedeoglo D D and Simashkevich A V. Electric and luminescent properties of zinc selenide. Kishinyov: Shtiintsa (1984).
  2. Georgobiani A N and Sheynkman M K. The physics of AIIBVI compounds. Moscow: Nauka (1986).
  3. Gavrilenko V I, Grekhov A M, Korbutyak D V and Litovchenko V G. Optical properties of semiconductors: handbook. Kiyev: Naukova dumka (1987).
  4. Peter Yu Yu and Kardona M. Fundamentals of semiconductors. Moscow: Fizmatlit (2002).
  5. Li Huan-Yong, Jie Wan-Qi, Zhang Shi-An, Sun Zhen-Rong and Xu Ke-Wei, 2006. The photoluminescence of ZnSe bulk single crystals excited by femtosecond pulse. Chin. Phys. 15: 2407–2414. doi:10.1088/1009-1963/15/10/037
  6. Kishida S, Matsuura К, Mori Н, Mizuguchi Y and Tsurumi I, 1988. Temperature dependence of the 2.5 eV emission band in Se-treated ZnSe crystals. Phys. Stat. Sol. (a). 109: 617–623. doi:10.1002/pssa.2211090230
  7. Kishida S, Matsuura K and Matsuoka A, 1988. The transient behaviors of the 2.5 eV emission band in Se-treated ZnSe crystals. Phys. Stat. Sol. (a). 105: 165–168. doi:10.1002/pssa.2211050261
  8. Vaksman Yu F, 1995. Radiative recombination in oxygen-activated zinc selenide single crystals. Semiconductors. 29: 346–348.
  9. Vil'chinskaya S S, Oleshko V I and Gorina S G, 2011. Low-temperature luminescence of zinc selenide crystals grown by various methods. Izv. Vuzov: Ser. Fiz. 54: 138–142.
  10. Mideros D A. Optical properties of AIIBVI compounds with an isoelectronic admixture of oxygen from the standpoint of the theory of disjoint zones (on the example of the ZnS–ZnSe system). Abstract. Moscow: Moscow Power Engineering Institute (Technical University) (2008).
  11. Makhniy V P, Kinzerskaya O V, Senko I M and Slotov A M, 2016. High temperature luminescence of ZnSe:Yb crystals. Technology and Design in Electronic Equipment. 2–3: 37–40. doi:10.15222/TKEA2016.2-3.37
  12. Vaksman Yu F, Nitsuk Yu A, Yatsun V V, Nasibov A S and Shapkin P V, 2011. Effect of iron impurities on the photoluminescence and photoconductivity of ZnSe crystals in the visible spectral region. Semiconductors. 45: 1129–1132. doi:10.1134/S1063782611090235
  13. Abrams B L and Holloway P H, 2004. Role of the surface in luminescent processes. Chem. Rev. 104: 5783–5802. doi:10.1021/cr020351r
  14. Manhas M, Vinay Kumar, Ntwaeaborwa O M and Swart H C, 2016. Structural, surface and luminescence properties of Ca3B2O6:Dy3+ phosphors. Ceramics International. 42: 5743–5753. doi:10.1016/j.ceramint.2015.12.107
  15. Abbasov I, Musayev M, Huseynov J, Kostyrko M, Babayev S, Eyyubov G and Aliyeva S, 2020. Photoluminescence spectra of polycrystalline ZnSe in different experimental geometries. Ukr. J. Phys. Opt. 21: 103–114. doi:10.3116/16091833/21/2/103/2020
  16. Devyatykh G G, Gavrishchuk Ye M and Dadanov A Yu, 1990. Study of the kinetics of zinc selenide chemical deposition from the gas phase in a horizontal flow reactor. High-Purity Substances. 2: 174–179.
  17. Hartman H, Hildisch L, Krause E and Mohling W, 1991. Morphological stability and crystal structure of CVD grown zinc selenide. J. Mater. Sci. 26: 4917–4923. doi:10.1007/BF00549871
  18. Philipose U, Yang S, Xu T and Harry E Ruda, 2007. Origin of the red luminescence band in photoluminescence spectra of ZnSe nanowires. Appl. Phys. Lett. 90: 063103. doi:10.1063/1.2457190
  19. Morozova N K and Miroshnikova I N, 2020. Anomalous edge emission from zinc selenide heavily doped with oxygen. Semiconductors. 54: 59–64. doi:10.1134/S1063782620010169
  20. Saxena A, Yang S, Philipose U and Ruda H E, 2008. Excitonic and pair-related photoluminescence in ZnSe nanowires. J. Appl. Phys. 103: 053109 (1–7). doi:10.1063/1.2885729
  21. Morozova N K, Mideros D A, Gavrishchuk E M and Galstyan V G, 2008. Role of background O and Cu impurities in the optics of ZnSe crystals in the context of the band anticrossing model. Semiconductors. 42: 131–136. doi:10.1134/S1063782608020024
  22. Triboulet R and Siffert P. CdTe and related compounds; physics, defects, hetero- and nanostructures, crystal growth surfaces and applications. Oxford: Elsevier (2010).
  23. Alizadeh M and Degoda V Ya, 2018. The spectra of X-ray and photoluminescence of high-resistance crystals of ZnSe. Ukr. J. Phys. 63: 557–562. doi:10.15407/ujpe63.6.557
  24. Morozova N K, Karetnikov I A, Blinov V V and Gavrishchuk E M, 2001. Studies of the infrared luminescence of ZnSe doped with copper and oxygen. Semiconductors. 35: 512–515. doi:10.1134/1.1371612
  25. Degoda V Ya, Pavlova N Yu, Podust G P and Sofiienko A O, 2015. Spectral structure of the X-ray stimulated phosphorescence of monocrystalline ZnSe. Physica B. 465: 1–6. doi:10.1016/j.physb.2015.02.021
  26. Alizadeh M, Degoda V Ya, Kozhushko B V and Pavlova N Yu, 2017. Luminescence of dipole-centers in ZnSe crystals. Funct. Mater. 24: 206–211. doi:10.15407/fm24.02.206
  27. Alizadeh M and Degoda V Ya, 2018. The spectra of X-ray and photoluminescence of high-resistance crystals of ZnSe. Ukr. J. Phys. 63: 557–562. doi:10.15407/ujpe63.6.557
  28. Ivanova G N, Kasiyan V A, Nedeoglo D D and Oprya S V, 1998. The influence of copper doping method of n-ZnSe crystals on the structure of radiative centres of long-wave luminescence. Semiconductors. 32: 171–177. doi:10.1134/1.1187337
  29. Thomas A E, Russel G J and Woods J, 1984. Self-activated emission in ZnS and ZnSe. J. Phys. C. 17: 6219–6228. doi:10.1088/0022-3719/17/34/022
  30. Skobeeva V M, Serdyuk V V, Semenyuk L N and Malushin N V, 1986. Influence of technological conditions upon the luminescence properties of ZnTe–ZnSe heterostructures grown by liquid-phase epitaxy. J. Appl. Spectrosc. 44: 243–246. doi:10.1007/BF00660356
(c) Ukrainian Journal of Physical Optics