Ukrainian Journal of Physical Optics 

Volume 21, Issue 3, 2020

Home page
 
 

Other articles 

in this issue
Effect of picosecond-laser irradiation on the properties of nanostructured aluminium-doped zinc oxide thin films 

1Khan M. N., 1Almohammedi A. and 2Farooq W. A.

1Department of Physics, Faculty of Science, Islamic University, Madinah 42351,   Saudi Arabia mnkhan@iu.edu.sa, mnkhan_phy@yahoo.com
2Department of Physics and Astron, College of Science, King Saud University,   Riyadh 11451, Saudi Arabia

Download this article

Abstract. Thin films of nanostructured zinc oxide doped with aluminium of different concentrations are synthesized on glass substrates, using a spin-coated sol–gel method. The effect of picosecond-laser irradiation on these thin films is studied using different optical techniques. Their structural and optical properties are investigated using X-ray diffraction, near-visible and infrared absorption spectra and photoluminescence. Optical bandgap values are calculated using a Tauc’s method. Slight variation in the relative intensity of X-ray diffraction and broadening of the lines are observed as a result of laser irradiation that causes some disorder in crystallinity. The relative intensities of the absorption and emission spectra decrease with increasing percentage of aluminium and laser-exposure time. The value of this decrease depends on the dopant concentration. Moreover, the emission reveals a slight red shift. The size of nanocrystals also changes at different Al doping percentages and exposure times. The reduction of the relative intensities mentioned above is attributed to changing nanocrystal sizes and structure of a surface layer.

Keywords: ZnO thin films, X-ray diffraction, optical absorption, bandgap, emission, laser irradiation

UDC: 535.21
Ukr. J. Phys. Opt. 21 126-140
doi: 10.3116/16091833/21/3/126/2020
Received: 20.01.2020

Анотація.  Тонкі плівки наноструктурованого оксиду цинку, легованого алюмінієм різної концентрації, синтезовано на скляних підкладках за допомогою процесу золь-гель із покриттям, одержаним за методом центрифугування. Вплив пікосекундного лазерного опромінення на ці тонкі плівки вивчено різними оптичними методиками. Їхні структурні та оптичні властивості з’ясовано шляхом досліджень рентгенівської дифракції, видимого та інфрачервоного спектрів поглинання, а також фотолюмінесценції. Величину оптичної щілини обчислено за методом Таука. Виявлено незначні зміни у відносній інтенсивності рентгенівської дифракції та розширення ліній як результат лазерного опромінення, яке викликає певний розлад кристалічної будови. Відносні інтенсивності спектрів поглинання та випромінювання зменшуються зі зростанням відсоткового складу алюмінію та часу лазерної експозиції. Величина цього зменшення залежить від концентрації легуючої речовини. Крім того, явище емісії виявляє незначний червоний зсув. Розмір нанокристалів також змінюється зі змінами відсотку алюмінію та часу експозиції. Пониження відносної інтенсивності, згадане вище, пояснюється зміною розмірів нанокристалів та структури поверхневого шару.

REFERENCES
  1. Naik G V, Kim J and Boltasseva A, 2011. Oxides and nitrides as alternative plasmonic materials in the optical range. Opt. Mater. Exp. 1: 1090-1099. doi:10.1364/OME.1.001090
  2. Franzen S, 2008. Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold. J. Phys. Chem. C. 112: 6027-6032. doi:10.1021/jp7097813
  3. Ginley D S and Bright C. 2000. Transparent conducting oxides. MRS Bulletin. 25: 15-18. doi:10.1557/mrs2000.256
  4. Minami T, 2000. New n-type transparent conducting oxides. MRS Bulletin. 25: 38-44. doi:10.1557/mrs2000.149
  5. Triboulet R and Perrière J, 2003. Epitaxial growth of ZnO films. Prog. Cryst. Growth Charact. Mater. 47: 65-138. doi:10.1016/j.pcrysgrow.2005.01.003
  6. Shaoqiang C, Jian Z, Xiao F, Xiaohua W, Laiqiang L, Yanling S, Qingsong X, Chang W, Jianzhong Z and Ziqiang Z, 2005. Nanocrystalline ZnO thin films on porous silicon/silicon substrates obtained by sol-gel technique. Appl. Surf. Sci. 241: 384-391. doi:10.1016/j.apsusc.2004.07.040
  7. Jiao S J, Zhang Z Z, Lu M Y, Shen D Z, Yao B, Zhang J Z, Li B H, Zhao D X, Fan X W and Tang Z. K, 2006. ZnO p-n junction light-emitting diodes fabricated on sapphire substrates. Appl. Phys. Lett. 88: 031911-3. doi:10.1063/1.2166686
  8. Priyanka Jood, Rutvik J Mehta, Yanliang Zhang, Germanas Peleckis, Xiaolin Wang, Richard W. Siegel, Theo Borca-Tasciuc, Shi Xue Dou, and Ganpati Ramanath, 2011. Al-doped zinc oxide nanocomposites with enhanced thermoelectric properties. Nano Lett. 11: 4337-4342. doi:10.1021/nl202439h
  9. Bhosle V, Prater J T, Yang F, Burk D, Forrest S R and Narayan J, 2007. Gallium-doped zinc oxide films as transparent electrodes for organic solar cell applications. J. Appl. Phys. 102: 1-5. doi:10.1063/1.2750410
  10. Venkatesh P S, Ramakrishnan V and Jeganathan K, 2012. Vertically aligned indium doped zinc oxide nanorods for the application of nanostructured anodes by radio frequency magnetron sputtering. Cryst. Eng. Comm. 14: 3907-3914. doi:10.1039/c2ce25220a
  11. Lin J M, Zhang Y Z, Ye Z Z, Gu XQ, Pan XH, Yang YF, Lu JG, He HP, Zhao BH, 2009. Nb-doped ZnO transparent conducting films fabricated by pulsed laser deposition. Appl. Surf. Sci. 255: 6460-6463. doi:10.1016/j.apsusc.2009.01.002
  12. Verma A, Khan F, Kar D, Chakravarty B C, Singh S N and Husain M. 2010. Sol-gel derived aluminum doped zinc oxide for application as anti-reflection coating in terrestrial silicon solar cells. Thin Solid Films. 518: 2649-2653. doi:10.1016/j.tsf.2009.08.010
  13. Serier H, Gaudon M and Menetrier M, 2009. Al-doped ZnO powdered materials, Al Solubility limit and IR absorption properties. Solid State Sci. 11: 1192-1197. doi:10.1016/j.solidstatesciences.2009.03.007
  14. Du S F, Tian Y J, Liu H D, Liu J and Chen Y F, 2006. Calcination effects on the properties of gallium-doped zinc oxide powders. J. Amer. Ceram. Soc. 89: 2440-2443. doi:10.1111/j.1551-2916.2006.01093.x
  15. Zhang, W H, Zhang W D and Zhou J F, 2009. Solvent thermal synthesis and gas-sensing properties of Fe-doped ZnO. J. Mater. Sci. 45: 209-241. doi:10.1007/s10853-009-3920-y
  16. Khan M A, Kumar M S, Khan M N, Ahamed M and Al Dwayyan A S, 2014. Microstructure and blue shift in optical band gap of nanocrystalline AlxZn1-xO thin films. J. Lumin. 155: 275-281. doi:10.1016/j.jlumin.2014.06.007
  17. Ji Y L and Jiang Y J, 2006. Increasing the electrical conductivity of poly(vinylidene fluoride) by KrF excimer laser irradiation. Appl. Phys. Lett. 89: 221103-3. doi:10.1063/1.2390632
  18. Chang L, Jiang Y J and Ji L, 2007. Improvement of the electrical and ferro-magnetic properties in La0.67Ca 0.33 MnO3 thin film irradiated by CO2 laser. Appl. Phys. Lett. 90: 082505. doi:10.1063/1.2679147
  19. Overschelde O V, Guisbiers G and Wantelet M, 2009. Nanocrystallization of anatase or rutile TiO2 by laser treatment. J Phys. Chem C. 113: 15343-15345. doi:10.1021/jp905163j
  20. Hui L, Yaoquan T, Lin X, Fang, B, Luo D and Laaksonen A, 2010. Effects of laser irradiation on the structure and optical properties of ZnO thin films. Mater. Lett. 64: 2072-2075. doi:10.1016/j.matlet.2010.06.022
  21. Shan F K and Yu Y S, 2004. Band gap energy of pure and Al-doped ZnO thin films. J. Eur. Ceram. Soc. 24: 1869-1872. doi:10.1016/S0955-2219(03)00490-4
  22. Aohi T, Hatanka Y and Look D C, 2000. ZnO diode fabricated by excimer-laser doping. Appl. Phys. Lett. 76: 3257-2. doi:10.1063/1.126599
  23. Wang X C, Lim G C, Liu W, Soh C B and Chua S J, 2005. Effects of 248 nm excimer laser irradiation on the properties of Mg-doped GaN. Appl. Surf. Sci. 252: 2071. doi:10.1016/j.apsusc.2005.03.195
  24. Zhao Y and Jiang Y, 2008. Effect of KrF excimer laser irradiation on the properties of ZnO thin films. J. Appl. Phys. 103: 114903-3. doi:10.1063/1.2931005
  25. Nie M, Zhao Y and Zeng Y, 2014. Effects of annealing and laser irradiation on optical and electrical properties of ZnO thin films. J. Laser Appl. 26: 022005-6. doi:10.2351/1.4866676
  26. Oh M S, Kim S H, Hwang D K, Park S J and Seong T Y, 2005. Formation of low resistance nonalloyed Ti/Au ohmic contacts to n-Type ZnO by KrF excimer laser irradiation. Electro-Chem. Solid-State Lett. 8: G317-G319. doi:10.1149/1.2056447
  27. Oh M S, Hwang D K, Lim J H, Choi Y S and Park S J, 2007. Improvement of Pt Schottky contacts to n-type ZnO by KrF excimer laser irradiation. Appl. Phys. Lett. 91: 042109-3. doi:10.1063/1.2764436
  28. Xu Q, Hong R D, Huang H L, Zhang Z F, Zhang M K, Chen X P and Wu Z Y, 2013. Laser annealing effect on optical and electrical properties of Al doped ZnO films. Opt. & Laser Techn. 45: 513-517. doi:10.1016/j.optlastec.2012.06.001
  29. Hou Y and Jayatissa A H, 2014. Effect of laser irradiation on gas sensing properties of sol-gel derived nanocrystalline Al-doped ZnO thin films. Thin Solid Films. 562: 585-591. doi:10.1016/j.tsf.2014.03.089
  30. Scorticati D, Illiberi A, Bor T, Eijt S, Sch€ut H, Reomer G, Gunnewiek M K, Lenferink A, Kniknie B, Joy R M, Dorenkamper M, de Lange D, Otto C, Borsa D, Soppe W and Veld A H, 2015. Thermal annealing using ultra-short laser pulses to improve the electrical properties of Al:ZnO. Acta Mater. 98: 327-335. doi:10.1016/j.actamat.2015.07.047
  31. Tang F L, Wong M K, Fung J C, Chang C S and Lee S T, 2008. Transparent conducting aluminum doped zinc oxide thin film prepared by sol-gel process followed by laser irradiation treatment. 517: 891-895. doi:10.1016/j.tsf.2008.08.157
  32. Akdağ A, Budak H F, Efe M Y A, Büyükaydın M, Can M, Turgut G and Sönmez E, 2016. Structural and morphological properties of Al doped ZnO nanoparticles. J. Phys: Conf. Ser. 707: 012020-6. doi:10.1088/1742-6596/707/1/012020
  33. Benzarouk H, Drici A A, Mekhnache M, Amara A A, Guerioune M and Bernede J C, 2012. Effect of different dopant elements (Al, Mg and Ni) on microstructural, optical and electrochemical properties of ZnO thin films deposited by spray pyrolysis (SP). Superlattices Microstruct. 52: 594-604. doi:10.1016/j.spmi.2012.06.007
  34. Alver U, Kilinc T, Bacaksiz E, Nezir S and Mutlu I H, 2007. Temperature dependence of ZnO rods produced by ultrasonic spray pyrolysis method. Mater. Chem. Phys. 106: 227-230. doi:10.1016/j.matchemphys.2007.05.031
  35. Muiva C M, Sathiaraj T S and Maabong K, 2011. Effect of doping concentration on the properties of aluminium doped zinc oxide thin films prepared by spray pyrolysis for transparent electrode applications. Ceram. Int. 37: 555-560. doi:10.1016/j.ceramint.2010.09.042
  36. Ilican S, Caglar Y and Caglar M, 2008. Preparation and characterization of ZnO thin films deposited by sol-gel spin coating method. J. Optoelectron. Adv. Mater. 10: 2578-2583.
  37. Zhang W Y, He D K, Liu Z Z, Sun L J and Fu Z X, 2010. Preparation of transparent conducting Al-doped ZnO thin films by single source chemical vapour deposition. J. Optoelectron. Adv. Mater - Rapid Commun. 4 (11): 1651-1654.
  38. Burstein E, 1954. Anomalous optical absorption limit in InSb. Phys. Rev. 25: 632-633. doi:10.1103/PhysRev.93.632
  39. Sernelius B E, Berggren K F, Jin Z C, Hamburg I and Granqvist C G, 1988. Band-gap tailoring of ZnO by means of heavy Al doping. Phys. Rev. B. 37: 10244-10248. doi:10.1103/PhysRevB.37.10244
  40. Maeng W J, Lee J, Lee J H, Chung K B and Park J S, 2011. Studies on optical, structural and electrical properties of atomic layer deposited Al-doped ZnO thin films with various Al concentrations and deposition temperatures. J. Phys. D: Appl. Phys. 44: 445305-7. doi:10.1088/0022-3727/44/44/445305
  41. Al-Ghamdi A A, Al-Hartomy O A, El Okr, M, Nawar A M, El-Gazzar S, El Tantawy F and Yakuphanoglu F, 2014. Semiconducting properties of Al doped ZnO thin films. Spectrochim. Acta A: Molec. Biomolec. Spectr. 131: 512-517. doi:10.1016/j.saa.2014.04.020
  42. Srinatha N, No Y S, Kamble V B, Chakravarty S, Suriyamurthy N, Angadi B, Umarjif A M and Choib W K, 2016. Effect of RF power on the structural, optical and gas sensing properties of RF-sputtered Al doped ZnO thin films. RSC Adv. 6: 9779-9788. doi:10.1039/C5RA22795J
  43. Djelloul A, Aida M S and Bougdira J, 2010. Photoluminescence, FTIR and X-ray diffraction studies on undoped and Al-doped ZnO thin films grown on polycrystalline α-alumina substrates by ultrasonic spray pyrolysis. J. Lumin. 130: 2113-2117. doi:10.1016/j.jlumin.2010.06.002
  44. Nickel N H and Fleischer K, 2003. Hydrogen local vibrational modes in zinc oxide. Phys. Rev. Lett. 90: 197402-4. doi:10.1103/PhysRevLett.90.197402
  45. Kim Y S and Tai W P, 2007. Electrical and optical properties of Al-doped ZnO thin films by sol-gel process. Appl. Surf. Sci. 253: 4911-4916. doi:10.1016/j.apsusc.2006.10.068
(c) Ukrainian Journal of Physical Optics