Home
page
Other articles
in this issue |
Effect of picosecond-laser
irradiation on the properties of nanostructured aluminium-doped zinc oxide
thin films
1Khan M. N., 1Almohammedi
A. and 2Farooq W. A.
1Department of
Physics, Faculty of Science, Islamic University, Madinah 42351,
Saudi Arabia mnkhan@iu.edu.sa, mnkhan_phy@yahoo.com
2Department of
Physics and Astron, College of Science, King Saud University,
Riyadh 11451, Saudi Arabia
Download this
article
Abstract. Thin films of nanostructured zinc oxide doped with
aluminium of different concentrations are synthesized on glass substrates,
using a spin-coated sol–gel method. The effect of picosecond-laser irradiation
on these thin films is studied using different optical techniques. Their
structural and optical properties are investigated using X-ray diffraction,
near-visible and infrared absorption spectra and photoluminescence. Optical
bandgap values are calculated using a Tauc’s method. Slight variation
in the relative intensity of X-ray diffraction and broadening of the lines
are observed as a result of laser irradiation that causes some disorder
in crystallinity. The relative intensities of the absorption and emission
spectra decrease with increasing percentage of aluminium and laser-exposure
time. The value of this decrease depends on the dopant concentration. Moreover,
the emission reveals a slight red shift. The size of nanocrystals also
changes at different Al doping percentages and exposure times. The reduction
of the relative intensities mentioned above is attributed to changing nanocrystal
sizes and structure of a surface layer.
Keywords: ZnO thin films, X-ray diffraction,
optical absorption, bandgap, emission, laser irradiation
UDC: 535.21
Ukr. J. Phys. Opt. 21 126-140
doi: 10.3116/16091833/21/3/126/2020
Received: 20.01.2020
Анотація. Тонкі плівки наноструктурованого
оксиду цинку, легованого алюмінієм різної
концентрації, синтезовано на скляних підкладках
за допомогою процесу золь-гель із покриттям,
одержаним за методом центрифугування.
Вплив пікосекундного лазерного опромінення
на ці тонкі плівки вивчено різними оптичними
методиками. Їхні структурні та оптичні
властивості з’ясовано шляхом досліджень
рентгенівської дифракції, видимого та
інфрачервоного спектрів поглинання, а
також фотолюмінесценції. Величину оптичної
щілини обчислено за методом Таука. Виявлено
незначні зміни у відносній інтенсивності
рентгенівської дифракції та розширення
ліній як результат лазерного опромінення,
яке викликає певний розлад кристалічної
будови. Відносні інтенсивності спектрів
поглинання та випромінювання зменшуються
зі зростанням відсоткового складу алюмінію
та часу лазерної експозиції. Величина цього
зменшення залежить від концентрації легуючої
речовини. Крім того, явище емісії виявляє
незначний червоний зсув. Розмір нанокристалів
також змінюється зі змінами відсотку алюмінію
та часу експозиції. Пониження відносної
інтенсивності, згадане вище, пояснюється
зміною розмірів нанокристалів та структури
поверхневого шару. |
|
REFERENCES
-
Naik G V, Kim J and Boltasseva A, 2011. Oxides and nitrides as alternative
plasmonic materials in the optical range. Opt. Mater. Exp. 1: 1090-1099.
doi:10.1364/OME.1.001090
-
Franzen S, 2008. Surface plasmon polaritons and screened plasma absorption
in indium tin oxide compared to silver and gold. J. Phys. Chem. C. 112:
6027-6032. doi:10.1021/jp7097813
-
Ginley D S and Bright C. 2000. Transparent conducting oxides. MRS Bulletin.
25: 15-18. doi:10.1557/mrs2000.256
-
Minami T, 2000. New n-type transparent conducting oxides. MRS Bulletin.
25: 38-44. doi:10.1557/mrs2000.149
-
Triboulet R and Perrière J, 2003. Epitaxial growth of ZnO films. Prog.
Cryst. Growth Charact. Mater. 47: 65-138. doi:10.1016/j.pcrysgrow.2005.01.003
-
Shaoqiang C, Jian Z, Xiao F, Xiaohua W, Laiqiang L, Yanling S, Qingsong
X, Chang W, Jianzhong Z and Ziqiang Z, 2005. Nanocrystalline ZnO thin films
on porous silicon/silicon substrates obtained by sol-gel technique. Appl.
Surf. Sci. 241: 384-391. doi:10.1016/j.apsusc.2004.07.040
-
Jiao S J, Zhang Z Z, Lu M Y, Shen D Z, Yao B, Zhang J Z, Li B H, Zhao D
X, Fan X W and Tang Z. K, 2006. ZnO p-n junction light-emitting diodes
fabricated on sapphire substrates. Appl. Phys. Lett. 88: 031911-3. doi:10.1063/1.2166686
-
Priyanka Jood, Rutvik J Mehta, Yanliang Zhang, Germanas Peleckis, Xiaolin
Wang, Richard W. Siegel, Theo Borca-Tasciuc, Shi Xue Dou, and Ganpati Ramanath,
2011. Al-doped zinc oxide nanocomposites with enhanced thermoelectric properties.
Nano Lett. 11: 4337-4342. doi:10.1021/nl202439h
-
Bhosle V, Prater J T, Yang F, Burk D, Forrest S R and Narayan J, 2007.
Gallium-doped zinc oxide films as transparent electrodes for organic solar
cell applications. J. Appl. Phys. 102: 1-5. doi:10.1063/1.2750410
-
Venkatesh P S, Ramakrishnan V and Jeganathan K, 2012. Vertically aligned
indium doped zinc oxide nanorods for the application of nanostructured
anodes by radio frequency magnetron sputtering. Cryst. Eng. Comm. 14: 3907-3914.
doi:10.1039/c2ce25220a
-
Lin J M, Zhang Y Z, Ye Z Z, Gu XQ, Pan XH, Yang YF, Lu JG, He HP, Zhao
BH, 2009. Nb-doped ZnO transparent conducting films fabricated by pulsed
laser deposition. Appl. Surf. Sci. 255: 6460-6463. doi:10.1016/j.apsusc.2009.01.002
-
Verma A, Khan F, Kar D, Chakravarty B C, Singh S N and Husain M. 2010.
Sol-gel derived aluminum doped zinc oxide for application as anti-reflection
coating in terrestrial silicon solar cells. Thin Solid Films. 518: 2649-2653.
doi:10.1016/j.tsf.2009.08.010
-
Serier H, Gaudon M and Menetrier M, 2009. Al-doped ZnO powdered materials,
Al Solubility limit and IR absorption properties. Solid State Sci. 11:
1192-1197. doi:10.1016/j.solidstatesciences.2009.03.007
-
Du S F, Tian Y J, Liu H D, Liu J and Chen Y F, 2006. Calcination effects
on the properties of gallium-doped zinc oxide powders. J. Amer. Ceram.
Soc. 89: 2440-2443. doi:10.1111/j.1551-2916.2006.01093.x
-
Zhang, W H, Zhang W D and Zhou J F, 2009. Solvent thermal synthesis and
gas-sensing properties of Fe-doped ZnO. J. Mater. Sci. 45: 209-241. doi:10.1007/s10853-009-3920-y
-
Khan M A, Kumar M S, Khan M N, Ahamed M and Al Dwayyan A S, 2014. Microstructure
and blue shift in optical band gap of nanocrystalline AlxZn1-xO thin films.
J. Lumin. 155: 275-281. doi:10.1016/j.jlumin.2014.06.007
-
Ji Y L and Jiang Y J, 2006. Increasing the electrical conductivity of poly(vinylidene
fluoride) by KrF excimer laser irradiation. Appl. Phys. Lett. 89: 221103-3.
doi:10.1063/1.2390632
-
Chang L, Jiang Y J and Ji L, 2007. Improvement of the electrical and ferro-magnetic
properties in La0.67Ca 0.33 MnO3 thin film irradiated by CO2 laser. Appl.
Phys. Lett. 90: 082505. doi:10.1063/1.2679147
-
Overschelde O V, Guisbiers G and Wantelet M, 2009. Nanocrystallization
of anatase or rutile TiO2 by laser treatment. J Phys. Chem C. 113: 15343-15345.
doi:10.1021/jp905163j
-
Hui L, Yaoquan T, Lin X, Fang, B, Luo D and Laaksonen A, 2010. Effects
of laser irradiation on the structure and optical properties of ZnO thin
films. Mater. Lett. 64: 2072-2075. doi:10.1016/j.matlet.2010.06.022
-
Shan F K and Yu Y S, 2004. Band gap energy of pure and Al-doped ZnO thin
films. J. Eur. Ceram. Soc. 24: 1869-1872. doi:10.1016/S0955-2219(03)00490-4
-
Aohi T, Hatanka Y and Look D C, 2000. ZnO diode fabricated by excimer-laser
doping. Appl. Phys. Lett. 76: 3257-2. doi:10.1063/1.126599
-
Wang X C, Lim G C, Liu W, Soh C B and Chua S J, 2005. Effects of 248 nm
excimer laser irradiation on the properties of Mg-doped GaN. Appl. Surf.
Sci. 252: 2071. doi:10.1016/j.apsusc.2005.03.195
-
Zhao Y and Jiang Y, 2008. Effect of KrF excimer laser irradiation on the
properties of ZnO thin films. J. Appl. Phys. 103: 114903-3. doi:10.1063/1.2931005
-
Nie M, Zhao Y and Zeng Y, 2014. Effects of annealing and laser irradiation
on optical and electrical properties of ZnO thin films. J. Laser Appl.
26: 022005-6. doi:10.2351/1.4866676
-
Oh M S, Kim S H, Hwang D K, Park S J and Seong T Y, 2005. Formation of
low resistance nonalloyed Ti/Au ohmic contacts to n-Type ZnO by KrF excimer
laser irradiation. Electro-Chem. Solid-State Lett. 8: G317-G319. doi:10.1149/1.2056447
-
Oh M S, Hwang D K, Lim J H, Choi Y S and Park S J, 2007. Improvement of
Pt Schottky contacts to n-type ZnO by KrF excimer laser irradiation. Appl.
Phys. Lett. 91: 042109-3. doi:10.1063/1.2764436
-
Xu Q, Hong R D, Huang H L, Zhang Z F, Zhang M K, Chen X P and Wu Z Y, 2013.
Laser annealing effect on optical and electrical properties of Al doped
ZnO films. Opt. & Laser Techn. 45: 513-517. doi:10.1016/j.optlastec.2012.06.001
-
Hou Y and Jayatissa A H, 2014. Effect of laser irradiation on gas sensing
properties of sol-gel derived nanocrystalline Al-doped ZnO thin films.
Thin Solid Films. 562: 585-591. doi:10.1016/j.tsf.2014.03.089
-
Scorticati D, Illiberi A, Bor T, Eijt S, Sch€ut H, Reomer G, Gunnewiek
M K, Lenferink A, Kniknie B, Joy R M, Dorenkamper M, de Lange D, Otto C,
Borsa D, Soppe W and Veld A H, 2015. Thermal annealing using ultra-short
laser pulses to improve the electrical properties of Al:ZnO. Acta Mater.
98: 327-335. doi:10.1016/j.actamat.2015.07.047
-
Tang F L, Wong M K, Fung J C, Chang C S and Lee S T, 2008. Transparent
conducting aluminum doped zinc oxide thin film prepared by sol-gel process
followed by laser irradiation treatment. 517: 891-895. doi:10.1016/j.tsf.2008.08.157
-
Akdağ A, Budak H F, Efe M Y A, Büyükaydın M, Can M, Turgut G and Sönmez
E, 2016. Structural and morphological properties of Al doped ZnO nanoparticles.
J. Phys: Conf. Ser. 707: 012020-6. doi:10.1088/1742-6596/707/1/012020
-
Benzarouk H, Drici A A, Mekhnache M, Amara A A, Guerioune M and Bernede
J C, 2012. Effect of different dopant elements (Al, Mg and Ni) on microstructural,
optical and electrochemical properties of ZnO thin films deposited by spray
pyrolysis (SP). Superlattices Microstruct. 52: 594-604. doi:10.1016/j.spmi.2012.06.007
-
Alver U, Kilinc T, Bacaksiz E, Nezir S and Mutlu I H, 2007. Temperature
dependence of ZnO rods produced by ultrasonic spray pyrolysis method. Mater.
Chem. Phys. 106: 227-230. doi:10.1016/j.matchemphys.2007.05.031
-
Muiva C M, Sathiaraj T S and Maabong K, 2011. Effect of doping concentration
on the properties of aluminium doped zinc oxide thin films prepared by
spray pyrolysis for transparent electrode applications. Ceram. Int. 37:
555-560. doi:10.1016/j.ceramint.2010.09.042
-
Ilican S, Caglar Y and Caglar M, 2008. Preparation and characterization
of ZnO thin films deposited by sol-gel spin coating method. J. Optoelectron.
Adv. Mater. 10: 2578-2583.
-
Zhang W Y, He D K, Liu Z Z, Sun L J and Fu Z X, 2010. Preparation of transparent
conducting Al-doped ZnO thin films by single source chemical vapour deposition.
J. Optoelectron. Adv. Mater - Rapid Commun. 4 (11): 1651-1654.
-
Burstein E, 1954. Anomalous optical absorption limit in InSb. Phys. Rev.
25: 632-633. doi:10.1103/PhysRev.93.632
-
Sernelius B E, Berggren K F, Jin Z C, Hamburg I and Granqvist C G, 1988.
Band-gap tailoring of ZnO by means of heavy Al doping. Phys. Rev. B. 37:
10244-10248. doi:10.1103/PhysRevB.37.10244
-
Maeng W J, Lee J, Lee J H, Chung K B and Park J S, 2011. Studies on optical,
structural and electrical properties of atomic layer deposited Al-doped
ZnO thin films with various Al concentrations and deposition temperatures.
J. Phys. D: Appl. Phys. 44: 445305-7. doi:10.1088/0022-3727/44/44/445305
-
Al-Ghamdi A A, Al-Hartomy O A, El Okr, M, Nawar A M, El-Gazzar S, El Tantawy
F and Yakuphanoglu F, 2014. Semiconducting properties of Al doped ZnO thin
films. Spectrochim. Acta A: Molec. Biomolec. Spectr. 131: 512-517. doi:10.1016/j.saa.2014.04.020
-
Srinatha N, No Y S, Kamble V B, Chakravarty S, Suriyamurthy N, Angadi B,
Umarjif A M and Choib W K, 2016. Effect of RF power on the structural,
optical and gas sensing properties of RF-sputtered Al doped ZnO thin films.
RSC Adv. 6: 9779-9788. doi:10.1039/C5RA22795J
-
Djelloul A, Aida M S and Bougdira J, 2010. Photoluminescence, FTIR and
X-ray diffraction studies on undoped and Al-doped ZnO thin films grown
on polycrystalline α-alumina substrates by ultrasonic spray pyrolysis.
J. Lumin. 130: 2113-2117. doi:10.1016/j.jlumin.2010.06.002
-
Nickel N H and Fleischer K, 2003. Hydrogen local vibrational modes in zinc
oxide. Phys. Rev. Lett. 90: 197402-4. doi:10.1103/PhysRevLett.90.197402
-
Kim Y S and Tai W P, 2007. Electrical and optical properties of Al-doped
ZnO thin films by sol-gel process. Appl. Surf. Sci. 253: 4911-4916. doi:10.1016/j.apsusc.2006.10.068
(c) Ukrainian Journal
of Physical Optics |