Ukrainian Journal of Physical Optics 

Volume 21, Issue 3, 2020

Home page
 
 

Other articles 

in this issue
Influence of optical radiation and magnetic field on the properties of InSe<NaNO2> clathrate

1Dupliak I., 2,3Ivashchyshyn F., 2Całus D., 4Seredyuk B., 2Chabecki P., 3Maksymych V. and 1Fengping Li

1Wenzhou University Institute of Laser and Optoelectronic Intelligent  Manufacturing, Ocean Science and Technology Innovation Park, No. 19 Binhai 3rd Road, Yongxing Street, Longwan District, Wenzhou, Zhejiang, China
2Czestochowa University of Technology, Faculty of Electrical Engineering,  Al. Armii Krajowej 17, Częstochowa, 42-200, Poland.  FedirIvashchyshyn@gmail.com 
3Lviv Polytechnic National University, 12 S. Bandera Street, 79013 Lviv, Ukraine
4Hetman Petro Sahaidachnyi National Army Academy, 32 Heroes of Maidan Street, 79026 Lviv, Ukraine

Download this article

Abstract. We investigate the changes occurring in the physical properties of InSe single crystals as a result of NaNO2 intercalation. The degree of crystal-lattice expansion is analyzed. The properties of the original InSe single crystals and the two-fold or four-fold expanded crystals are examined. Moreover, we analyze the effect of quantum capacity on the process of current passage in case of the two-fold expanded InSe<NaNO2> clathrate under a constant magnetic field. The effect of ‘negative capacitance’ at the low frequencies of magnetic field in the two-fold expanded InSe<NaNO2> clathrate is studied under conditions of illumination.

Keywords: intercalation, InSe, clathrates, nanohybrides, impedance spectroscopy

UDC: 537.226.8+535.21
Ukr. J. Phys. Opt. 21 115-125
doi: 10.3116/16091833/21/3/115/2020
Received: 04.05.2020

Анотація.  Досліджено зміни, що відбуваються у фізичних властивостях монокристалів InSe внаслідок інтеркаляції NaNO2. Проаналізовано ступінь розширення кристалічної ґратки. Досліджено властивості вихідних монокристалів InSe та двократно або чотирикратно розширених кристалів. Крім того, проаналізовано вплив квантової ємності на процес проходження струму для двократно розширеного клатрату InSe<NaNO2> під впливом постійного магнітного поля. Вивчено вплив «негативної ємності» на низьких частотах магнітного поля в двократно розширеному клатраті InSe<NaNO2> в умовах освітлення.

REFERENCES
  1. Choy J H, 2004. Intercalative route to heterostructured nanohybrid. J. Phys. Chem. Sol. 65: 373-383. doi:10.1016/j.jpcs.2003.10.047
  2. Solís-Fernández P, Bissett M and Ago H, 2017. Synthesis, structure and applications of graphene-based 2D heterostructures. Chem. Soc. Rev. 46: 4572-4613. doi:10.1039/C7CS00160F
  3. 3 Mashtalir O, Naguib M, Mochalin V N, Dall'Agnese Y, Heon M, Barsoum M W and Gogotsi Y, 2013. Intercalation and delamination of layered carbides and carbonitrides. Nature Commun. 4: 1716. doi:10.1038/ncomms2664
  4. Balaban O V, Grygorchak I I, Kondyr A I, Zaichenko O S, Mitina N E, Datsyuk V V, Trotsenko S E and M'yahkota O S, 2017. Investigation of the planar structures of quantum functional polymeric nanolayers on polybenzimidazole fiber nanosheets. Mater. Sci. 53: 179-185. doi:10.1007/s11003-017-0060-4
  5. Balaban O, Grygorchak I, Mitina N, Zaichenko A, Lukiyanets B, Glasunova V, Borysiuk A, Larkin M, Hevus O, Pokladok N, Datsyuk V and Trotsenko S, 2019. Fabrication of 1D-nanofiber/Fe2O3 composites with tailored magnetic properties. J. Nanosci. Nanotechnol. 19: 3871-3878. doi:10.1166/jnn.2019.16302
  6. Yang L, Tan X, Wang Z and Zhang X, 2015. Supramolecular polymers: historical development, preparation, characterization, and functions. Chem. Rev. 115: 7196-7239. doi:10.1021/cr500633b
  7. Steed J W and Atwood J L. Supramolecular chemistry: 2nd Ed.: John Wiley & Sons (2009). doi:10.1002/9780470740880
  8. Tien C, Charnaya E V, Baryshnikov S V, Lee MK, Sun S Y, Michel D and Böhlmann W, 2004. Evolution of NaNO2 in porous matrices. Phys. Solid State. 46: 2301-2305. doi:10.1134/1.1841397
  9. Ushakov V V, Aronin A S, Karavanskiĭ V A and Gippius A A, 2009. Formation and optical properties of CdSSe semiconductor nanocrystals in the silicate glass matrix. Phys. Solid State. 51: 2161. doi:10.1134/S106378340910028X
  10. Danishevskiĭ A M, Kyutt R N, Sitnikova A A, Shanina B D, Kurdyukov D A and Gordeev S K, 2009. Palladium clusters in nanoporous carbon samples: structural properties. Phys. Solid State. 51: 640-644. doi:10.1134/S1063783409030330
  11. Baryshnikov S V, Charnaya E V, Milinskiǐ A Y, Stukova E V, Tien C and Michel D, 2010. Dielectric properties of crystalline binary KNO3-AgNO3 mixtures embedded in nanoporous silicate matrices. Phys. Solid State. 52: 392-396. doi:10.1134/S1063783410020277
  12. Fridkin V M, 2006. Critical size in ferroelectric nanostructures. Sov. Physics Uspekhi. 49: 193-202 doi:10.1070/PU2006v049n02ABEH005840
  13. Lies R M A, 1977. III-VI compounds. In: Preparation and crystal growth material with layered structure. Ed. Lies R M A, p. 225-254. doi:10.1007/978-94-017-2750-1_5
  14. Ivashchyshyn F, Grygorchak I and Hryhorchak O I, 2017. Influence of the degree of the expansion of the crystal lattice on properties and response to the electromagnetic fields of GaSe <NaNO2> clathrate. Slovak Int. Sci. J. 5: 8-14.
  15. Grygorchak I I, Ivashchyshyn F O, Lukiyanets B A and Kulyk Y O, 2017. Cointercalate semiconductors GaSe (InSe) with guest multiferroic NaNO2 + FeSO4. J. Nano-Electron. Phys. 9: 03016. doi:10.21272/jnep.9(3).03016
  16. Friend R H and Yoffe A D, 1987. Electronic properties of intercalation complexes of the transition metal dichalcogenides. Adv. Phys. 36: 1-94. doi:10.1080/00018738700101951
  17. Stoynov Z B, Grafov B M, Savova-Stoynova B and Elkin V V. Electrochemical impedance. Moscow: Nauka (1991).
  18. Barsoukov E and Macdonald J R. Impedance spectroscopy: theory, experiment, and applications.: John Wiley & Sons (2005). doi:10.1002/0471716243
  19. Luryi S, 1988. Quantum capacitance devices. Appl. Phys. Lett. 52: 501. doi:10.1063/1.99649
  20. Bisquert J, Randriamahazaka H and Garcia-Belmonte G, 2005. Inductive behaviour by charge-transfer and relaxation in solid-state electrochemistry. Electrochim. Acta. 51: 627-640. doi:10.1016/j.electacta.2005.05.025
  21. Mora-Seró I, Bisquert J, Fabregat-Santiago F, Garcia-Belmonte G, Zoppi G, Durose K, Proskuryakov Y, Oja I, Belaidi A, Dittrich T, Tena-Zaera R, Katty A, Lévy-Clément C, Barrioz V and Irvine S J C, 2006. Implications of the negative capacitance observed at forward bias in nanocomposite and polycrystalline solar cells. Nano Lett. 6: 640-650. doi:10.1021/nl052295q
  22. Ivashchyshyn F, Grygorchak I, Stakhira P, Cherpak V and Micov M, 2012. Nonorganic semiconductor - conductive polymer intercalate nanohybrids: fabrication, properties, application. Curr. Appl. Phys. 12: 160-165. doi:10.1016/j.cap.2011.05.032
  23. Bishchaniuk T M, Grygorchak I I, Fechan A V and Ivashchyshyn F O, 2014. Semiconductor clathrates with a periodically modulated topology of a host ferroelectric liquid crystal in thermal, magnetic, and light-wave fields. Tech. Phys. 59: 1085-1087. doi:10.1134/S1063784214070068
  24. Pollak M and Geballe T H, 1961. Low-frequency conductivity due to hopping processes in silicon. Phys. Rev. 122: 1742. doi:10.1103/PhysRev.122.1742
  25. Valov I, Linn E, Tappertzhofen S, Schmelzer S, Van Den Hurk J, Lentz F and Waser R, 2013. Nanobatteries in redox-based resistive switches require extension of memristor theory. Nature Commun. 4: 1771. doi:10.1038/ncomms2784
(c) Ukrainian Journal of Physical Optics