Home
page
Other articles
in this issue |
Influence of optical
radiation and magnetic field on the properties of InSe<NaNO2> clathrate
1Dupliak I., 2,3Ivashchyshyn
F., 2Całus D., 4Seredyuk
B., 2Chabecki P., 3Maksymych
V. and 1Fengping Li
1Wenzhou University
Institute of Laser and Optoelectronic Intelligent Manufacturing,
Ocean Science and Technology Innovation Park, No. 19 Binhai 3rd Road, Yongxing
Street, Longwan District, Wenzhou, Zhejiang, China
2Czestochowa
University of Technology, Faculty of Electrical Engineering, Al.
Armii Krajowej 17, Częstochowa, 42-200, Poland. FedirIvashchyshyn@gmail.com
3Lviv Polytechnic
National University, 12 S. Bandera Street, 79013 Lviv, Ukraine
4Hetman Petro
Sahaidachnyi National Army Academy, 32 Heroes of Maidan Street, 79026 Lviv,
Ukraine
Download this
article
Abstract. We investigate the changes occurring in the physical
properties of InSe single crystals as a result of NaNO2 intercalation.
The degree of crystal-lattice expansion is analyzed. The properties of
the original InSe single crystals and the two-fold or four-fold expanded
crystals are examined. Moreover, we analyze the effect of quantum capacity
on the process of current passage in case of the two-fold expanded InSe<NaNO2>
clathrate under a constant magnetic field. The effect of ‘negative capacitance’
at the low frequencies of magnetic field in the two-fold expanded InSe<NaNO2>
clathrate is studied under conditions of illumination.
Keywords: intercalation, InSe, clathrates,
nanohybrides, impedance spectroscopy
UDC: 537.226.8+535.21
Ukr. J. Phys. Opt. 21 115-125
doi: 10.3116/16091833/21/3/115/2020
Received: 04.05.2020
Анотація. Досліджено зміни,
що відбуваються у фізичних властивостях
монокристалів InSe внаслідок інтеркаляції
NaNO2. Проаналізовано ступінь розширення
кристалічної ґратки. Досліджено властивості
вихідних монокристалів InSe та двократно
або чотирикратно розширених кристалів.
Крім того, проаналізовано вплив квантової
ємності на процес проходження струму для
двократно розширеного клатрату InSe<NaNO2>
під впливом постійного магнітного поля.
Вивчено вплив «негативної ємності» на
низьких частотах магнітного поля в двократно
розширеному клатраті InSe<NaNO2> в умовах
освітлення. |
|
REFERENCES
-
Choy J H, 2004. Intercalative route to heterostructured nanohybrid. J.
Phys. Chem. Sol. 65: 373-383. doi:10.1016/j.jpcs.2003.10.047
-
Solís-Fernández P, Bissett M and Ago H, 2017. Synthesis, structure and
applications of graphene-based 2D heterostructures. Chem. Soc. Rev. 46:
4572-4613. doi:10.1039/C7CS00160F
-
3 Mashtalir O, Naguib M, Mochalin V N, Dall'Agnese Y, Heon M, Barsoum M
W and Gogotsi Y, 2013. Intercalation and delamination of layered carbides
and carbonitrides. Nature Commun. 4: 1716. doi:10.1038/ncomms2664
-
Balaban O V, Grygorchak I I, Kondyr A I, Zaichenko O S, Mitina N E, Datsyuk
V V, Trotsenko S E and M'yahkota O S, 2017. Investigation of the planar
structures of quantum functional polymeric nanolayers on polybenzimidazole
fiber nanosheets. Mater. Sci. 53: 179-185. doi:10.1007/s11003-017-0060-4
-
Balaban O, Grygorchak I, Mitina N, Zaichenko A, Lukiyanets B, Glasunova
V, Borysiuk A, Larkin M, Hevus O, Pokladok N, Datsyuk V and Trotsenko S,
2019. Fabrication of 1D-nanofiber/Fe2O3 composites with tailored magnetic
properties. J. Nanosci. Nanotechnol. 19: 3871-3878. doi:10.1166/jnn.2019.16302
-
Yang L, Tan X, Wang Z and Zhang X, 2015. Supramolecular polymers: historical
development, preparation, characterization, and functions. Chem. Rev. 115:
7196-7239. doi:10.1021/cr500633b
-
Steed J W and Atwood J L. Supramolecular chemistry: 2nd Ed.: John Wiley
& Sons (2009). doi:10.1002/9780470740880
-
Tien C, Charnaya E V, Baryshnikov S V, Lee MK, Sun S Y, Michel D and Böhlmann
W, 2004. Evolution of NaNO2 in porous matrices. Phys. Solid State. 46:
2301-2305. doi:10.1134/1.1841397
-
Ushakov V V, Aronin A S, Karavanskiĭ V A and Gippius A A, 2009. Formation
and optical properties of CdSSe semiconductor nanocrystals in the silicate
glass matrix. Phys. Solid State. 51: 2161. doi:10.1134/S106378340910028X
-
Danishevskiĭ A M, Kyutt R N, Sitnikova A A, Shanina B D, Kurdyukov D A
and Gordeev S K, 2009. Palladium clusters in nanoporous carbon samples:
structural properties. Phys. Solid State. 51: 640-644. doi:10.1134/S1063783409030330
-
Baryshnikov S V, Charnaya E V, Milinskiǐ A Y, Stukova E V, Tien C and
Michel D, 2010. Dielectric properties of crystalline binary KNO3-AgNO3
mixtures embedded in nanoporous silicate matrices. Phys. Solid State. 52:
392-396. doi:10.1134/S1063783410020277
-
Fridkin V M, 2006. Critical size in ferroelectric nanostructures. Sov.
Physics Uspekhi. 49: 193-202 doi:10.1070/PU2006v049n02ABEH005840
-
Lies R M A, 1977. III-VI compounds. In: Preparation and crystal growth
material with layered structure. Ed. Lies R M A, p. 225-254. doi:10.1007/978-94-017-2750-1_5
-
Ivashchyshyn F, Grygorchak I and Hryhorchak O I, 2017. Influence of the
degree of the expansion of the crystal lattice on properties and response
to the electromagnetic fields of GaSe <NaNO2> clathrate. Slovak Int.
Sci. J. 5: 8-14.
-
Grygorchak I I, Ivashchyshyn F O, Lukiyanets B A and Kulyk Y O, 2017. Cointercalate
semiconductors GaSe (InSe) with guest multiferroic NaNO2 + FeSO4. J. Nano-Electron.
Phys. 9: 03016. doi:10.21272/jnep.9(3).03016
-
Friend R H and Yoffe A D, 1987. Electronic properties of intercalation
complexes of the transition metal dichalcogenides. Adv. Phys. 36: 1-94.
doi:10.1080/00018738700101951
-
Stoynov Z B, Grafov B M, Savova-Stoynova B and Elkin V V. Electrochemical
impedance. Moscow: Nauka (1991).
-
Barsoukov E and Macdonald J R. Impedance spectroscopy: theory, experiment,
and applications.: John Wiley & Sons (2005). doi:10.1002/0471716243
-
Luryi S, 1988. Quantum capacitance devices. Appl. Phys. Lett. 52: 501.
doi:10.1063/1.99649
-
Bisquert J, Randriamahazaka H and Garcia-Belmonte G, 2005. Inductive behaviour
by charge-transfer and relaxation in solid-state electrochemistry. Electrochim.
Acta. 51: 627-640. doi:10.1016/j.electacta.2005.05.025
-
Mora-Seró I, Bisquert J, Fabregat-Santiago F, Garcia-Belmonte G, Zoppi
G, Durose K, Proskuryakov Y, Oja I, Belaidi A, Dittrich T, Tena-Zaera R,
Katty A, Lévy-Clément C, Barrioz V and Irvine S J C, 2006. Implications
of the negative capacitance observed at forward bias in nanocomposite and
polycrystalline solar cells. Nano Lett. 6: 640-650. doi:10.1021/nl052295q
-
Ivashchyshyn F, Grygorchak I, Stakhira P, Cherpak V and Micov M, 2012.
Nonorganic semiconductor - conductive polymer intercalate nanohybrids:
fabrication, properties, application. Curr. Appl. Phys. 12: 160-165. doi:10.1016/j.cap.2011.05.032
-
Bishchaniuk T M, Grygorchak I I, Fechan A V and Ivashchyshyn F O, 2014.
Semiconductor clathrates with a periodically modulated topology of a host
ferroelectric liquid crystal in thermal, magnetic, and light-wave fields.
Tech. Phys. 59: 1085-1087. doi:10.1134/S1063784214070068
-
Pollak M and Geballe T H, 1961. Low-frequency conductivity due to hopping
processes in silicon. Phys. Rev. 122: 1742. doi:10.1103/PhysRev.122.1742
-
Valov I, Linn E, Tappertzhofen S, Schmelzer S, Van Den Hurk J, Lentz F
and Waser R, 2013. Nanobatteries in redox-based resistive switches require
extension of memristor theory. Nature Commun. 4: 1771. doi:10.1038/ncomms2784
(c) Ukrainian Journal
of Physical Optics |