Ukrainian Journal of Physical Optics 

Volume 21, Issue 2, 2020

Home page
 
 

Other articles 

in this issue
Thermally activated spectroscopy of optical absorption in Bi12SiO20 crystals

1Panchenko T. and 2Karpova L.

1O.Honchar Dnipro National University, 72 Gagarin Avenue, 49010 Dnipro, Ukraine panchtv141@gmail.com
2Ukrainian State University of Chemical Technology, 8 Gagarin Avenue, 49010 Dnipro, Ukraine

Download this article

Abstract. We suggest applying a method of thermally activated spectroscopy to the problem of impurity optical absorption. The method consists in measuring the temperature dependence of optical absorption in a wide-gap semiconductor crystal and analyzing the temperature derivative of this dependence. The above technique allows for determining the energies of thermal and optical activations and the strength of electron–phonon interaction for the impurity centres.

Keywords: Bi12SiO20 crystals, Al, Ga and Cr impurities, photo-induced absorption, temperature dependences

UDC: 537.311.1
Ukr. J. Phys. Opt. 21 84-92
doi: 10.3116/16091833/21/2/84/2020
Received: 12.03.2020

Анотація. Запропоновано метод термічно активованої спектроскопії в застосуванні до оптичного поглинання домішок. Метод полягає у вимірюванні температурної залежності оптичного поглинання в широкозонному напівпровідниковому кристалі та аналізі температурної похідної цієї залежності. Згадана методика дає змогу визначити енергії термічної  та оптичної активації та силу електрон-фононної взаємодії для домішкових центрів.
 

REFERENCES
  1. Gorokhovatsky Yu and Bordovsky H, Thermally activation current spectroscopy of high-resistance semiconductors and dielectrics. Moscow: Nauka (1991).
  2. Serdyuk V V and Waxman Yu F. Luminescence of semiconductors. Kiev-Odessa: Vyshcha shkola (1988).
  3. Petrov M P, Stepanov S I and Khomenko A V. Photorefractive crystals in coherent optics. St.-Petersburg: Nauka (1992). doi:10.1007/978-3-540-47056-4
  4. Georges M P and Lemaire Ph C, 1999. Real-time holographic interferometry using sillenite photorefractive crystals. Study and optimization of a transportable setup for quantified phase measurements on large objects. Appl. Phys. B. 68: 1073-1083. doi:10.1007/s003400050749
  5. Dyachenko A A and Panchenko T V, 2015. Excitation and erasure of photochromic effect in the Bi12SiO20 crystals doped with Al, Ga and Sn. Ukr. J. Phys. Opt.: 16: 127-133. doi:10.3116/16091833/16/3/127/2015
  6. Panchenko T V and Truseyeva N A, 1991. Optical absorption and photochromic effect in Cr and Mn-doped Bi12SiO20 single crystals. Ferroelectrics. 115: 73-80. doi:10.1080/00150199108014480
  7. Ridley B K. Quantum processes in semiconductors. Moscow: Nauka (1986).
  8. Malinovsky V K, Gudaev O A, Gusev S I and Demenko V A. Photoinduced phenomena in sillenites (Ed. by P E Tverdochlebov). Novosibirsk: Nauka (1990).
  9. Takamori T and Just D, 1990. Thermally stimulated studies of bismuth silicon oxide crystal. J. Appl. Phys. 67: 848-850. doi:10.1063/1.345741
  10. Hamri A, Secu M, Topa V and Briat B, 1995. Influence of initial conditions on the optical and electrical characterisation of sillenite-type crystals. Opt. Mater. 4: 197-201. doi:10.1016/B978-0-444-82167-6.50015-4
  11. Panchenko T V and Snezhnoi G, 1993. Thermal depolarization analysis on the polarization mechanisms in Bi12SiO20 crystals doped with Al and Ga. Phys. Solid. State. 35: 1598-1603.
  12. Foldvari I, Halliburton L E and Edwards G J, 1991. Photo-induced defects in pure and Al-doped Bi12SiO20 single crystals. Solid State Commun. 77: 181-188. doi:10.1016/0038-1098(91)90329-T
  13. Berezkin V I and Grachev A I, 1984. Properties of Al-doped bismuth silicon oxide. Phys. Stat. Sol. (a). 82: K95-K99. doi:10.1002/pssa.2210820162
  14. Bloom D and McKeever S W S, 1995. Trap level spectroscopy of undoped and Ga-doped Bi12GeO20 using thermally stimulated conductivity. J. Appl. Phys. 77: 6521-6533. doi:10.1063/1.359061
  15. Panchenko T V, Potapovith Yu N and Karpova L M, 1998. Thermoelectret state in Mn, Сr-doped Bi12SiO20 crystals. Ferroelectrics. 214: 287-294. doi:10.1080/00150199808220268
(c) Ukrainian Journal of Physical Optics