Home
page
Other articles
in this issue |
Reconstruction of
spectral reflectance based on mixed weighting and local optimization
1Leihong Zhang, 1Runchu
Xu, 1Shuangquan Lu, 1Liuhua Yang, 1Xiao
Yuan, 2Kaiming Wang and 2Dawei Zhang
1College of Communication
and Art Design, University of Shanghai for Science and Technology, Shanghai,
200093, China, *xrc1231@163.com
2School of Optical-Electrical
and Computer Engineering, University of Shanghai for Science and Technology,
Shanghai, 200093, China. * friedrich_suse@foxmail.com
Download this
article
Abstract. High-fidelity colour reproduction can be performed
through reconstructing a spectral reflectance of an object surface. The
particular branches in need of this reproduction range from colour printing
to artistic fields. In order to improve the reconstruction accuracy for
the spectral reflectance, we suggest a spectral-reflectance reconstruction
method based on a mixed weighting (MW). This method is a combination of
a number of earlier techniques, namely a Wiener estimation method and so-called
methods of weighting on a group with smaller colour difference and weighting
on a group with smaller spectral reflectance error. Specifically, we have
obtained the spectral estimation with higher reconstruction accuracy by
weighting the reconstruction spectra obtained by different methods. The
weights for these methods have been selected through minimizing the colour
difference. The MW method makes a full use of advantages of the underlying
methods. It reveals high accuracy and reduces the shortcomings of those
methods. Our experimental results confirm that the MW method improves the
reconstruction accuracy and the stability of spectral-reflectance data.
Keywords: colour difference, spectral reflectance
error, spectral reflectance reconstruction, weighting, local optimization
UDC: 535.67
Ukr. J. Phys. Opt. 21 65-83
doi: 10.3116/16091833/21/2/65/2020
Received: 23.03.2020
Анотація. Високоточне відтворення
кольорів можна здійснити за допомогою
реконструкції спектрального відбивання
поверхні предмета. Конкретні галузі, які
потребують такого відтворення, варіюються
від кольорового друку і аж до художнього
мистецтва. Для підвищення точності реконструкції
спектрального відбивання нами запропоновано
метод реконструкції спектрального відбивання
на основі змішаного зважування (ЗЗ). Цей
метод є поєднанням низки більш ранніх методів,
а саме методу оцінки Вінера і так званих
методів зважування по групі з меншою різницею
кольорів і зважування по групі з меншою
похибкою спектрального відбивання. Зокрема,
одержано спектральну оцінку з вищою точністю
реконструкції шляхом зважування реконстру¬йо¬ваних
спектрів, отриманих за різними методами.
Ваги цих методів було обрано шляхом мінімізації
різниці кольорів. Метод ЗЗ повністю використовує
переваги методів, які лежать в його основі.
Він володіє високою точністю та нівелює
недоліки згаданих методів. Результати
наших експериментів підтверджують, що
метод ЗЗ підвищує точність реконструкції
та стабільність даних для спектрального
відбивання.
|
|
REFERENCES
-
Xiao K D, Zhu Y, Li C, Connah D, Yates J M and Wuerger S, 2016. Improved
method for skin reflectance reconstruction from camera images. Opt. Express.
24: 14934-14950. https://doi.org/10.1364/OE.24.014934
-
Liang J X, Xiao K D, Pointer M R, Wan X and Li C, 2019. Spectra estimation
from raw camera responses based on adaptive local-weighted linear regression.
Opt. Express. 27: 5165-5180. https://doi.org/10.1364/OE.27.005165
-
Li J X, Liu W J, Li T, Rozen I, Zhao J, Bahari B, Kante B and Wang J, 2016.
Swimming micro-robot optical nanoscopy. Nano Lett. 16: 6604-6609. https://doi.org/10.1021/acs.nanolett.6b03303
-
Wang H W, Li J and Chen G X, 2011. Study on key issues of multi-spectral
color reproduction technique. Adv. Mater. Res. 117: 93-96. https://doi.org/10.4028/www.scientific.net/AMR.174.93
-
Zhu Y H, Li B and Xu X Y, 2012. Spectral reconstruction and accuracy appraisal
based on pseudo inverse method. IEEE Symposium on Photonics and Optoelectronics,
Shanghai, 1-3. https://doi.org/10.1109/SOPO.2012.6270485
-
Yuasa T, Honma R, Funamizu H, Nishidate I and Aizu Y, 2014. Color adjustment
algorithm adapted to the spectral reflectance estimation method. Opt. Rev.
21: 369-372. https://doi.org/10.1007/s10043-014-0056-3
-
Zhang X D, Wang Q, Yang G F and Wang M, 2014. Acquiring multi-spectral
images by digital still cameras based on XYZLMS interim connection space.
Chin. Opt. Lett. 12: 113302. https://doi.org/10.3788/COL201412.113302
-
Zhu Y H, Li B, Chen Q and He S H, 2013. Two spectral reconstruction methods
and their accuracy comparison. Appl. Mech. Mater. 239-240: 140-144. https://doi.org/10.4028/www.scientific.net/AMM.239-240.140
-
Zhang Y and Zhou S S, 2013. Research on reconstruction of spectral reflectance
based on principal component analysis. Appl. Mech. Mater. 262: 53-58. https://doi.org/10.4028/www.scientific.net/AMM.262.53
-
Agahian F, Amirshahi S A and Amirshahi S H, 2008. Reconstruction of reflectance
spectra using weighted principal component analysis. Color Res. Appl. 33:
360-371. https://doi.org/10.1002/col.20431
-
Yamaguchi M, Ohyama N and Murakami Y, 2009. Piecewise Wiener estimation
for reconstruction of spectral reflectance image by multipoint spectral
measurements. Appl. Opt. 48: 2188-2202.
https://doi.org/10.1364/AO.48.002188
-
Nishidate I, Maeda T, Niizeki K and Aizu Y, 2013. Estimation of melanin
and hemoglobin using spectral reflectance images reconstructed from a digital
RGB image by the Wiener estimation method. Sensors. 13: 7902-7915. https://doi.org/10.3390/s130607902
-
Zhang L H, Liang D, Li B, Kang Y, Pan Z, Zhang D and Ma X, 2016. Study
on the key technology of spectral reflectivity reconstruction based on
sparse prior by a single-pixel detector. Photon. Res. 4: 115-121. https://doi.org/10.1364/PRJ.4.000115
-
Li B, Zhang H J, Zhang L H, Kang Y, Zhan W, Yi W and Zhang D, 2017. Study
on the key technology of spectral reflectance reconstruction based on a
single pixel detector. Laser Phys. Lett. 14: 125203. https://doi.org/10.1088/1612-202X/aa8cde
-
Liang J X and Wan X X, 2017. Optimized method for spectral reflectance
reconstruction from camera responses. Opt. Express. 25: 28273-28287. https://doi.org/10.1364/OE.25.028273
-
Ostu H, Yamamoto M and Hachisuka T, 2018. Reproducing spectral reflectances
from tristimulus colours. Comp. Graph. Forum, 37: 370-381. https://doi.org/10.1111/cgf.13332
-
Cao B, Liao N F and Cheng H B, 2017. Spectral reflectance reconstruction
from RGB images based on weighting smaller color difference group. Color
Res. Appl. 42: 327-332. https://doi.org/10.1002/col.22091
-
Zhang X D, Wang Q, Li J C, Zhou X, Yang Y and Xu H, 2016. Estimating spectral
reflectance from camera responses based on CIE XYZ tristimulus values under
multi-illuminants. Color Res. Appl. 42: 68-77. https://doi.org/10.1002/col.22037
-
Kong L J, Zeng X, Zhang L H, Zhan W J, Zeng W C, 2019. Research on spectral
reflectance reconstruction based on genetic algorithm for selecting multi-illuminants.
Spectroscopy and Spectral Analysis. 39: 1162-1168. https://doi.org/10.3964/j.issn.1000-0593(2019)04-1162-07
-
Heikkinen V, 2018. Spectral reflectance estimation using Gaussian processes
and combination kernels. IEEE Transactions on Image Processing. 27: 3358-3373.
https://doi.org/10.1109/TIP.2018.2820839
-
Koundinya S, Sharma H, Sharma M, Upadhyay A, Manekar R, Mukhopadhyay R,
Karmakar A and Chaudhury S, 2018. 2D-3D CNN based architectures for spectral
reconstruction from RGB Images. IEEE CVF Conference on Computer Vision
and Pattern Recognition Workshop, p. 957-954. https://doi.org/10.1109/CVPRW.2018.00129
-
Han X H, Shi B X and Zheng Y Q, 2018. Residual HSRCNN: Residual hyper-spectral
reconstruction CNN from an RGB image. 24th IEEE Int. Conf. on Patterns
Reconstruction, p. 2664-2669. https://doi.org/10.1109/ICPR.2018.8545634
-
Shimano N and Hironaga M, 2006. Recovery of spectral reflectances of objects
being imaged without prior knowledge. IEEE Transactions on Image Processing.
15: 1848-1856. https://doi.org/10.1109/TIP.2006.877069
-
Zhang L H, Li B, Liang D and Ma X H, 2016. Study on the key technology
of spectral reflectance reconstruction based on the weighted measurement
matrix. Laser Phys. 26: 075202. https://doi.org/10.1088/1054-660X/26/7/075202
-
Yoo J H, Kyung W J, Ha H G and Ha Y-H, 2013. Estimation of reflectance
based on properties of selective spectrum with adaptive wiener estimation.
Proc. SPIE. 8652: 86520D. https://doi.org/10.1117/12.2005444
-
Wu G, Liu Z and Zhang J, 2015. Spectral color reproduction from CIE tristimulus
values using a node address array selection technique. Sign. Proc. Image
Proc. & Patt. Recogn. 8: 1786-1790. https://doi.org/10.14257/ijsip.2015.8.9.14
-
Song J H, Kim C and Yoo Y, 2015. Vein visualization using a smart phone
with multispectral Wiener estimation for point-of-care applications. IEEE
J. Biomed. Health Inform. 19: 733-788. https://doi.org/10.1109/JBHI.2014.2313145
-
Zhang L H, Li B and Pan Z L, Liang D, Kang Y, Zhang D and Ma X, 2016. A
method for selecting training samples based on camera response. Laser Phys.
Lett. 13: 095201. https://doi.org/10.1088/1612-2011/13/9/095201
-
Cao B, Liao N F, Li Y S and Cheng H, 2016. Improving reflectance reconstruction
from tri-stimulus values by adaptively combining colorimetric and reflectance
similarities. Opt. Eng. 56: 053104. https://doi.org/10.1117/1.OE.56.5.053104
-
Niu J, Zhang X D and Wang Q, 2012. Study on the color representing accuracy
of spectrum with different wavelength range and interval. Appl. Mech. Mater.
262: 13-17. https://doi.org/10.4028/www.scientific.net/AMM.262.13
(c) Ukrainian Journal
of Physical Optics |