Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Determination of thermal expansion coefficient for thermoelectric CaMnO3 with a shadow method

Chantira Boonsri, Pichet Limsuwan and Prathan Buranasiri

Department of Physics, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand 

Download this article

Abstract. We have measured thermal expansion coefficient of a bulk CaMnO3 thermoelectric module with a cylindrical shape, using a shadow method. The CaMnO3 module has been heated from the room temperature up to 773 K. At each temperature, the shadow image has been recorded by a CMOS camera and reconstructed with a HoloViewer program in MATLAB. Then the diameters of the module have been obtained at different temperatures in the region 300–773 K. Finally, we have determined the linear thermal expansion and the thermal expansion coefficient for CaMnO3. Our results demonstrate that the expansion coefficient for the bulk CaMnO3 thermoelectric module depends linearly on the temperature in the region under study.

Keywords: thermoelectric materials, thermal expansion, shadow method 

UDC: 535.8
Ukr. J. Phys. Opt. 21 26-34
doi: 10.3116/16091833/21/1/26/2020
Received: 26.11.2019

Анотація. Ми виміряли коефіцієнт теплового розширення об’ємного термоелектричного модуля CaMnO3 циліндричної форми, використовуючи тіньовий метод. Модуль CaMnO3 нагрівали від кімнатної температури до 773 К. При кожній температурі було записано тіньове зображення CMOS-камерою, яке реконструювали за допомогою програми HoloViewer у MATLAB. Далі було одержано діаметри модуля при різних температурах у діапазоні 300–773 К. Нарешті, було визначено лінійне теплове розширення та коефіцієнт теплового розширення CaMnO3. Наші результати засвідчують, що коефіцієнт розширення для об’ємного термоелектричного модуля CaMnO3 лінійно залежить від температури в дослідженому діапазоні.

REFERENCES
  1. Park K and Lee G W, 2013. Fabrication and thermoelectric power of -shaped Ca3Co4O9/CaMnO3 modules for renewable energy conversion. Energy. 60: 87-93. doi:10.1016/j.energy.2013.07.025
  2. Terasaki Y I, Sanago Y and Uchinokura K, 1997. Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B. 56: R12685-R12687. doi:10.1103/PhysRevB.56.R12685
  3. Ohtaki M, 2011. Recent aspects of oxide thermoelectric materials for power generation from mid-to- high temperature heat source. J. Ceram. Soc. Japan. 119: 775-775. doi:10.2109/jcersj2.119.770
  4. Fergus J W, 2012. Oxide materials for high temperature thermoelectric energy conversion. J. Eur. Ceram. Soc. 32: 525-540. doi:10.1016/j.jeurceramsoc.2011.10.007
  5. Daewoo S, Dongmok L, Chanyoung K, In-Jin S, Woochul K and Seunghyun B, 2012. Enhanced thermoelectric properties of tungsten disulfide-multiwalled carbon nanotube composites. J. Mater. Chem. 22: 21376-21381. doi:10.1039/c2jm34510b
  6. Zhang F P, Lu Q M, Zhang X and Zhang J X, 2013. Electrical transport properties of CaMnO3 thermoelectric compound: a theoretical study. J. Phys. Chem. Solids. 74: 1859-1864. doi:10.1016/j.jpcs.2013.07.019
  7. He J, Liu Y and Funahashi R, 2011. Oxide thermoelectrics: the challenges, progress, and outlook. J. Mater. Res. 26: 1762-1772. doi:10.1557/jmr.2011.108
  8. Kabir R, Zhang T, Wang D, Donelson R, Tian R, Tan Tand and Li S, 2014. Improvement in the thermoelectric properties of CaMnO3 perovskites by W doping. J. Mater. Sci. 49: 7522-7528. doi:10.1007/s10853-014-8459-x
  9. Thiel P, Eilertsen J, Populoh S, Saucke G, DVobeli M, Shkabko A, Sagarna L, Karvonen L and Weidenkaff A, 2013. Influence of tungsten substitution and oxygen deficiency on the thermoelectric properties of CaMnO3-d. J. Appl. Phys. 114: 243707. doi:10.1063/1.4854475
  10. Bocher L, Aguirre M, Logvinovich D, Shkabko A, Robert R, Trottmann M and Weidenkaff A, 2008. CaMn1-xNbxO3 (x = 0.08) perovskite-type phases as promising new high-temperature-type thermoelectric materials. Inorg. Chem. 47: 8077-8085. doi:10.1021/ic800463s
  11. Koumoto K, Funahashi R, Guilmeau E, Miyazaki Y, Weidenkaff A, Wang Y and Wan C, 2012. Thermoelectric ceramics for energy harvesting. J. Amer. Ceram. Soc. 96: 1-23. doi:10.1111/jace.12076
  12. Hikage Y, Masutani S, Sato T, Yoneda S, Ohno Y, Isoda Y, Imai Y and Shinohara Y, 2007. Thermal expansion properties of thermoelectric generating device component. 26th Int. Conf. on Thermoelectrics (2007): 331-335. doi:10.1109/ICT.2007.4569489
  13. Ravi V, Firdosy S, Caillat T, Bradon E, Vander Walde K, Maricic L and Sayir A, 2009. Thermal expansion studies of selected high-temperature thermoelectric materials. J. Electron. Mater. 38: 1334-1442. doi:10.1007/s11664-009-0734-2
  14. Falmbigl M, Rogl G, Rogl 1 P, Kriegisch M, Müller H, Bauer E, Reinecker M and Schranz W, 2010. Thermal expansion of thermoelectric type-I-clathrates. J. Appl. Phys. 108: 043529. doi:10.1063/1.3465637
  15. Jennifer E N, Eldon D C, Robert D S, Chun-I W, Timothy P H, Rosa M T, Melanie J K, Edgar L C and Mercouri G K, 2013. The thermal expansion coefficient as a key design parameter for thermoelectric materials and its relationship to processing dependent bloating. J. Mater. Sci. 48: 6233-6244. doi:10.1007/s10853-013-7421-7
  16. Zhou Q and Kennedy B J, 2006. Thermal expansion and structure of orthorhombic CaMnO3. J. Phys. Chem. Solids. 67: 1595-1598. doi:10.1016/j.jpcs.2006.02.011
  17. Neumeier J J, Bollinger R K, Timmins G E, Lane C R, Krogstad R D and Macaluso J, 2008. Capacitive-based dilatometer cell constructed of fused quartz for measuring the thermal expansion of solids. Rev. Sci. Instrum. 79: 033903. doi:10.1063/1.2884193
  18. Rotter M, Müller H, Gratz E, Doerr M and Loewenhaupt M, 1998. A miniature capacitance dilatometer for thermal expansion and magnetostriction. Rev. Sci. Instrum. 69: 2742-2746. doi:10.1063/1.1149009
  19. Roth P and Gmelin E, 1992. A capacitance displacement sensor with elastic diaphragm. Rev. Sci. Instrum. 63: 2051-2053. doi:10.1063/1.1143165
  20. James J D, Spittle J A, Brown S G R and Evans R W, 2001. A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures. Meas. Sci. Technol. 12: R1-R15. doi:10.1088/0957-0233/12/3/201
  21. Bennett S J, 1977. An absolute interferometric dilatometer. J. Phys. E: Sci. Instrum. 10: 525-530. doi:10.1088/0022-3735/10/5/030
  22. Imai H and Bates W J, 1981. Measurement of the linear thermal expansion coefficient of thin specimens. J. Phys. E: Sci. Instrum. 14: 883-888. doi:10.1088/0022-3735/14/7/024
  23. Schödel R, 2008. Ultra-high accuracy thermal expansion measurements with PTB's precision interferometer. Meas. Sci. Technol. 19: 084003. doi:10.1088/0957-0233/19/8/084003
  24. Cordero J, Heinrich T, Schuldt T, Gohlke M, Lucarelli S, Weise D and Braxmaier C, 2009. Interferometry based high-precision dilatometry for dimensional characterization of highly stable materials. Meas. Sci. Technol. 20: 095301. doi:10.1088/0957-0233/20/9/095301
  25. Okaji M and Imai H, 1984. A practical measurement system for the accurate determination of linear thermal expansion coefficients. J. Phys. E: Sci. Instrum. 17: 669-673. doi:10.1088/0022-3735/17/8/011
  26. Sao G D and Tiwary H V, 1982. Thermal expansion of poly (vinylidene fluoride) films. J. Appl. Phys. 53: 3040-3043. doi:10.1063/1.331047
  27. Tong H M, Hsuen H K D, Saenger K L and Su G W, 1991. Thickness-direction coefficient of thermal expansion measurement of thin polymer films. Rev. Sci. Instrum. 62: 422-430. doi:10.1063/1.1142137
  28. White G K, 1961. Measurement of thermal expansion at low temperatures. Cryogenics. 1: 151-158. doi:10.1016/S0011-2275(61)80028-3
  29. Kirby R K, 1992. In: Compendium of thermophysical property measurement methods, Eds. Maglic K D, Cezairliyan A and Peletsky V E. New York: Springer Science+Business Media, Vol. 2, p. 549.
(c) Ukrainian Journal of Physical Optics