Home
page
Other articles
in this issue |
Determination of
thermal expansion coefficient for thermoelectric CaMnO3 with a shadow method
Chantira Boonsri, Pichet Limsuwan and Prathan
Buranasiri
Department of Physics, Faculty of Science, King Mongkut's
Institute of Technology Ladkrabang, Bangkok 10520, Thailand
Download this
article
Abstract. We have measured thermal expansion coefficient of a
bulk CaMnO3 thermoelectric module with a cylindrical shape, using a shadow
method. The CaMnO3 module has been heated from the room temperature up
to 773 K. At each temperature, the shadow image has been recorded by a
CMOS camera and reconstructed with a HoloViewer program in MATLAB. Then
the diameters of the module have been obtained at different temperatures
in the region 300–773 K. Finally, we have determined the linear thermal
expansion and the thermal expansion coefficient for CaMnO3. Our results
demonstrate that the expansion coefficient for the bulk CaMnO3 thermoelectric
module depends linearly on the temperature in the region under study.
Keywords: thermoelectric materials, thermal
expansion, shadow method
UDC: 535.8
Ukr. J. Phys. Opt. 21 26-34
doi: 10.3116/16091833/21/1/26/2020
Received: 26.11.2019
Анотація. Ми виміряли коефіцієнт
теплового розширення об’ємного термоелектричного
модуля CaMnO3 циліндричної форми, використовуючи
тіньовий метод. Модуль CaMnO3 нагрівали від
кімнатної температури до 773 К. При кожній
температурі було записано тіньове зображення
CMOS-камерою, яке реконструювали за допомогою
програми HoloViewer у MATLAB. Далі було одержано
діаметри модуля при різних температурах
у діапазоні 300–773 К. Нарешті, було визначено
лінійне теплове розширення та коефіцієнт
теплового розширення CaMnO3. Наші результати
засвідчують, що коефіцієнт розширення
для об’ємного термоелектричного модуля
CaMnO3 лінійно залежить від температури в
дослідженому діапазоні. |
|
REFERENCES
-
Park K and Lee G W, 2013. Fabrication and thermoelectric power of -shaped
Ca3Co4O9/CaMnO3 modules for renewable energy conversion. Energy. 60: 87-93.
doi:10.1016/j.energy.2013.07.025
-
Terasaki Y I, Sanago Y and Uchinokura K, 1997. Large thermoelectric power
in NaCo2O4 single crystals. Phys. Rev. B. 56: R12685-R12687. doi:10.1103/PhysRevB.56.R12685
-
Ohtaki M, 2011. Recent aspects of oxide thermoelectric materials for power
generation from mid-to- high temperature heat source. J. Ceram. Soc. Japan.
119: 775-775. doi:10.2109/jcersj2.119.770
-
Fergus J W, 2012. Oxide materials for high temperature thermoelectric energy
conversion. J. Eur. Ceram. Soc. 32: 525-540. doi:10.1016/j.jeurceramsoc.2011.10.007
-
Daewoo S, Dongmok L, Chanyoung K, In-Jin S, Woochul K and Seunghyun B,
2012. Enhanced thermoelectric properties of tungsten disulfide-multiwalled
carbon nanotube composites. J. Mater. Chem. 22: 21376-21381. doi:10.1039/c2jm34510b
-
Zhang F P, Lu Q M, Zhang X and Zhang J X, 2013. Electrical transport properties
of CaMnO3 thermoelectric compound: a theoretical study. J. Phys. Chem.
Solids. 74: 1859-1864. doi:10.1016/j.jpcs.2013.07.019
-
He J, Liu Y and Funahashi R, 2011. Oxide thermoelectrics: the challenges,
progress, and outlook. J. Mater. Res. 26: 1762-1772. doi:10.1557/jmr.2011.108
-
Kabir R, Zhang T, Wang D, Donelson R, Tian R, Tan Tand and Li S, 2014.
Improvement in the thermoelectric properties of CaMnO3 perovskites by W
doping. J. Mater. Sci. 49: 7522-7528. doi:10.1007/s10853-014-8459-x
-
Thiel P, Eilertsen J, Populoh S, Saucke G, DVobeli M, Shkabko A, Sagarna
L, Karvonen L and Weidenkaff A, 2013. Influence of tungsten substitution
and oxygen deficiency on the thermoelectric properties of CaMnO3-d. J.
Appl. Phys. 114: 243707. doi:10.1063/1.4854475
-
Bocher L, Aguirre M, Logvinovich D, Shkabko A, Robert R, Trottmann M and
Weidenkaff A, 2008. CaMn1-xNbxO3 (x = 0.08) perovskite-type phases as promising
new high-temperature-type thermoelectric materials. Inorg. Chem. 47: 8077-8085.
doi:10.1021/ic800463s
-
Koumoto K, Funahashi R, Guilmeau E, Miyazaki Y, Weidenkaff A, Wang Y and
Wan C, 2012. Thermoelectric ceramics for energy harvesting. J. Amer. Ceram.
Soc. 96: 1-23. doi:10.1111/jace.12076
-
Hikage Y, Masutani S, Sato T, Yoneda S, Ohno Y, Isoda Y, Imai Y and Shinohara
Y, 2007. Thermal expansion properties of thermoelectric generating device
component. 26th Int. Conf. on Thermoelectrics (2007): 331-335. doi:10.1109/ICT.2007.4569489
-
Ravi V, Firdosy S, Caillat T, Bradon E, Vander Walde K, Maricic L and Sayir
A, 2009. Thermal expansion studies of selected high-temperature thermoelectric
materials. J. Electron. Mater. 38: 1334-1442. doi:10.1007/s11664-009-0734-2
-
Falmbigl M, Rogl G, Rogl 1 P, Kriegisch M, Müller H, Bauer E, Reinecker
M and Schranz W, 2010. Thermal expansion of thermoelectric type-I-clathrates.
J. Appl. Phys. 108: 043529. doi:10.1063/1.3465637
-
Jennifer E N, Eldon D C, Robert D S, Chun-I W, Timothy P H, Rosa M T, Melanie
J K, Edgar L C and Mercouri G K, 2013. The thermal expansion coefficient
as a key design parameter for thermoelectric materials and its relationship
to processing dependent bloating. J. Mater. Sci. 48: 6233-6244. doi:10.1007/s10853-013-7421-7
-
Zhou Q and Kennedy B J, 2006. Thermal expansion and structure of orthorhombic
CaMnO3. J. Phys. Chem. Solids. 67: 1595-1598. doi:10.1016/j.jpcs.2006.02.011
-
Neumeier J J, Bollinger R K, Timmins G E, Lane C R, Krogstad R D and Macaluso
J, 2008. Capacitive-based dilatometer cell constructed of fused quartz
for measuring the thermal expansion of solids. Rev. Sci. Instrum. 79: 033903.
doi:10.1063/1.2884193
-
Rotter M, Müller H, Gratz E, Doerr M and Loewenhaupt M, 1998. A miniature
capacitance dilatometer for thermal expansion and magnetostriction. Rev.
Sci. Instrum. 69: 2742-2746. doi:10.1063/1.1149009
-
Roth P and Gmelin E, 1992. A capacitance displacement sensor with elastic
diaphragm. Rev. Sci. Instrum. 63: 2051-2053. doi:10.1063/1.1143165
-
James J D, Spittle J A, Brown S G R and Evans R W, 2001. A review of measurement
techniques for the thermal expansion coefficient of metals and alloys at
elevated temperatures. Meas. Sci. Technol. 12: R1-R15. doi:10.1088/0957-0233/12/3/201
-
Bennett S J, 1977. An absolute interferometric dilatometer. J. Phys. E:
Sci. Instrum. 10: 525-530. doi:10.1088/0022-3735/10/5/030
-
Imai H and Bates W J, 1981. Measurement of the linear thermal expansion
coefficient of thin specimens. J. Phys. E: Sci. Instrum. 14: 883-888. doi:10.1088/0022-3735/14/7/024
-
Schödel R, 2008. Ultra-high accuracy thermal expansion measurements with
PTB's precision interferometer. Meas. Sci. Technol. 19: 084003. doi:10.1088/0957-0233/19/8/084003
-
Cordero J, Heinrich T, Schuldt T, Gohlke M, Lucarelli S, Weise D and Braxmaier
C, 2009. Interferometry based high-precision dilatometry for dimensional
characterization of highly stable materials. Meas. Sci. Technol. 20: 095301.
doi:10.1088/0957-0233/20/9/095301
-
Okaji M and Imai H, 1984. A practical measurement system for the accurate
determination of linear thermal expansion coefficients. J. Phys. E: Sci.
Instrum. 17: 669-673. doi:10.1088/0022-3735/17/8/011
-
Sao G D and Tiwary H V, 1982. Thermal expansion of poly (vinylidene fluoride)
films. J. Appl. Phys. 53: 3040-3043. doi:10.1063/1.331047
-
Tong H M, Hsuen H K D, Saenger K L and Su G W, 1991. Thickness-direction
coefficient of thermal expansion measurement of thin polymer films. Rev.
Sci. Instrum. 62: 422-430. doi:10.1063/1.1142137
-
White G K, 1961. Measurement of thermal expansion at low temperatures.
Cryogenics. 1: 151-158. doi:10.1016/S0011-2275(61)80028-3
-
Kirby R K, 1992. In: Compendium of thermophysical property measurement
methods, Eds. Maglic K D, Cezairliyan A and Peletsky V E. New York: Springer
Science+Business Media, Vol. 2, p. 549.
(c) Ukrainian Journal
of Physical Optics |