Home
page
Other articles
in this issue |
LiB3O5 pyroceramic
for thermoluminescent dosimeters
1Adamiv V. T., 1Burak
Ya. V., 1Teslyuk I. M., 2Antonyak O.
T., 3Moroz I. E. and 4,5Malynych S.
Z.
1Vlokh Institute
of Physical Optics, 23 Dragomanov Street, 79005 Lviv, Ukraine
2Department of
Experimental Physics, Ivan Franko Lviv National University, 8 Kyrylo and
Methodiy Street, 79005 Lviv, Ukraine
3Department of
Physics, Lviv Polytechnic National University, 12 S. Bandera Street, 79013
Lviv, Ukraine
4Department of
Photonics, Lviv Polytechnic National University, 12 S. Bandera Street,
79013 Lviv, Ukraine
5Department of
Electromechanics and Electronics, Hetman Petro Sahaidachnyi National Army
Academy, 32 Heroes of Maidan Street, 79012 Lviv, Ukraine
Download this
article
Abstract. We report on preparation procedures and thermoluminescent
properties of undoped and Ag-doped lithium triborate (LiB3O5)
pyroceramics. They are prepared using a technique of special annealing
of LiB3O5 glass. X-ray diffraction studies of our pyroceramic reveal formation
of a large number of nanosized crystallites within amorphous matrix. The
crystalline structure and the nature of thermoluminescence in the LiB3O5
pyroceramic are discussed. We demonstrate that this pyroceramic represents
a material promising for radiation dosimetry.
Keywords: lithium triborate, glasses, pyroceramic,
thermoluminescence, radiation dosimeters
UDC: 535.37
Ukr. J. Phys. Opt. 20 159-167
doi: 10.3116/16091833/20/4/159/2019
Received: 23.09.2019
Анотація. Досліджено процедури
приготування та термолюмінесцентні властивості
пірокераміки триборату літію (LiB3O5),
легованої Ag. Її виготовлено за технологією
спеціального відпалу скла LiB3O5.
Рентгенівські дифракційні дослідження
пірокераміки виявили факт формування в
аморфній матриці значної кількості нанорозмірних
кристалітів. Обговорено кристалічну структуру
та природу термолюмінесценції в пірокераміці
LiB3O5. Продемонстровано, що вона
є матеріалом, перспективним для радіаційної
дозиметрії. |
|
REFERENCES
-
Driscoll M, Francis T and Richard J, 1984. The response of thermoluminescent
materials to beta radiation. Radiat. Prot. Dosimetry. 9: 295-298. doi:10.1093/oxfordjournals.rpd.a083113
-
Fox P, Akber R and Pescott J, 1988. Spectral characteristics of six phosphors
used in thermo¬luminescence dosimetry. J. Phys. D. 21: 189-193. doi:10.1088/0022-3727/21/1/026
-
Noh A, Amin Y, Mahat R and Bradley D, 2001. Investigation of some commercial
TLD chips/discs as UV dosimeters. Radiat. Phys. Chem. 61: 497-499. doi:10.1016/S0969-806X(01)00313-9
-
Schulman J, Kirk R and West E. Use of lithium borate for thermoluminescence
dosimetry. In: Proc. USAEC Symp. Ser. 650637 (1967), p. 113.
-
Sastry B and Hummel F, 1958. Studies in lithium oxide systems: I, Li2O
B2O3-B2O3. J. Amer. Ceram. Soc. 41: 7-17. doi:10.1111/j.1151-2916.1958.tb13496.x
-
Beturne E and Touboul M, 1997. Synthesis of lithium borates (B/Li≥3)
as LiB3O5 by dehydration of hydrated precursors. J. Alloys Comp. 255: 91-97.
doi:10.1016/S0925-8388(96)02819-8
-
Moryc U and Ptak W, 1999. Infrared spectra of β-BaB2O4 and LiB3O5: new
nonlinear optical materials. J. Mol. Struct. 511: 241-249. doi:10.1016/S0022-2860(99)00164-7
-
Sabharwal S, Tiwari B and Sangeeta, 2003. Effect of highest temperature
invoked on the crystallization of LiB3O5 from boron-rich solution. J. Cryst.
Growth. 249: 502-506. doi:10.1016/S0022-0248(02)02242-X
-
Ozdemir Z, Ozbaygly G, Kizilyalli M and Yilmaz A, 2004. Synthesis and characterization
of lithium triborate. Physicochem. Probl. Min. Proc. 38: 321-327.
-
Depci T, Ozbaygly G and Yilmaz A, 2010. Comparison of different synthesis
methods to produce lithium triborate and their effects on its thermoluminescent
property. Metall. Mater. Trans. A. 41: 2584-2594. doi:10.1007/s11661-010-0341-0
-
Knitel M, Dorenbos P, van Eijk W, Plasteig B, Vianc B, Kahn-Harary A and
Vivien D, 2000. Photoluminescence and scintillation/thermoluminescence
yields of several Ce3+ and Eu2+ activated borates. Nucl. Instr. Meth. A.
443: 364-374. doi:10.1016/S0168-9002(99)01154-7
-
El-Faramawy N, El-Kamesy S, El-Agramy A and Metwally G, 2000. The dosimetric
properties of in-house prepared copper doped lithium borate examined using
the TL-technique. Radiat. Phys. Chem. 58: 9-13. doi:10.1016/S0969-806X(99)00361-8
-
M. Prokic, 2001. Lithium borate solid TL detectors. Radiat. Meas. 33: 393-396.
doi:10.1016/S1350-4487(01)00039-7
-
Depci T, Ozbaygly G and Yilmaz A, 2011. Synthesis and thermoluminescence
properties of rare earth oxides (Y, Ce-Lu) doped lithium triborate. J.
Rare Earths. 29: 618-622. doi:S1002-0721(10)60509-1
-
Ozdemir Z, Ozbaygly G and Yilmaz A, 2007. Investigation of thermoluminescence
properties of metal oxide doped lithium triborate. J. Mat. Sci. 42: 8501-8508.
doi:10.1007/s10853-007-1746-z
-
Kafadar V, Yazici A and Yildirim R, 2009. Determination of trapping parameters
of dosimetric thermoluminescent glow peak of lithium triborate (LiB3O5)
activated by aluminum. J. Lumin. 129: 710-714. doi:10.1016/j.jlumin.2009.01.017
-
Adamiv V, Burak Ya, Girnyk I, Kasperchyk J, Kityk I and Teslyuk I, 1997.
The growth and properties of K- and Ag-doped Li2B4O7 single crystals. Funct.
Mater. 4: 415-418.
-
Burak Ya, Adamiv V, Antonyak O, Malynych S, Pidzyrailo M and Teslyuk I,
2005. Thermoluminescence in doped single crystals Li2B4O7:A (A = Cu, Ag).
Ukr. J. Phys. 50: 1153-1158.
-
Antonyak O, Adamiv V, Burak Ya and Teslyuk I, 2002. Thermoluminescence
of doped Li2B4O7 single crystals. Funct. Mater. 9: 452-456.
-
Adamiv V, Antonyak O, Burak Ya, Pidzyrailo M and Teslyuk I, 2005. Model
of TSL-centers in Li2B4O7:A (A = Cu, Ag) single crystals. Funct. Mater.
12: 278-281.
-
Brant A, Kananan B, Murari M, McClory J, Petrosky J, Adamiv V, Burak Ya,
Dowben P and Halliburton L, 2011. Electron and hole traps in Ag-doped lithium
tetraborate (Li2B4O7) crystals. J. Appl. Phys. 110: 093719-7. doi:10.1063/1.3658264
-
Brant A, Buchanan D, McClory J, Adamiv V, Burak Ya, Halliburton L and Giles
N, 2014. Photoluminescence from Ag2+ ions in lithium tetraborate (Li2B4O7)
crystals. J. Lumin. 153: 79-84. doi:10.1016/j.jlumin.2014.03.008
-
Sontakke A, Biswas K, Tarafder A, Sen R and Annapurna A, 2011. Broadband
Er3+ emission in highly nonlinear bismuth modified zinc-borate glasses.
Opt. Mater. Express. 1: 344-356. doi:10.1364/OME.1.000344
-
Padlyak B, Mudry S, Kulyk Y, Drzewiecki A, Adamiv V, Burak Ya and Teslyuk
I, 2012. Synthesis and X-ray structural investigation of undoped borate
glasses. Mater. Sci. (Poland). 30: 264-273. doi:10.2478/s13536-012-0032-1
-
Randall J and Wilkins M, 1945. Phosphorescence and electron traps. I. The
study of trap distri¬butions. Proc. Roy. Soc. London, Ser. A. 184: 366-389.
doi:10.1098/rspa.1945.0024
-
Ogorodnikov I, Kruzhalov A, Radzhabov E and Isaenko L, 1999. Luminescent
properties of crystalline lithium triborate LiB3O5. Phys. Sol. State. 41:
197-201. doi:10.1134/1.1130754
-
Zachariasen W, 1964. The crystal structure of lithium metaborate. Acta
Cryst. 17: 749-751. doi:10.1107/S0365110X64001839
-
Burak Ya V, Moroz I Ye, 2003. Isostructural Phase transition in Li2B4O7.
Physics and Chemistry of Glasses. 44: 241–243
(c) Ukrainian Journal
of Physical Optics |