Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
LiB3O5 pyroceramic for thermoluminescent dosimeters
 

1Adamiv V. T., 1Burak Ya. V., 1Teslyuk I. M., 2Antonyak O. T., 3Moroz I. E. and 4,5Malynych S. Z.

1Vlokh Institute of Physical Optics, 23 Dragomanov Street, 79005 Lviv, Ukraine
2Department of Experimental Physics, Ivan Franko Lviv National University, 8 Kyrylo and Methodiy Street, 79005 Lviv, Ukraine
3Department of Physics, Lviv Polytechnic National University, 12 S. Bandera Street, 79013 Lviv, Ukraine
4Department of Photonics, Lviv Polytechnic National University, 12 S. Bandera Street, 79013 Lviv, Ukraine
5Department of Electromechanics and Electronics, Hetman Petro Sahaidachnyi National Army Academy, 32 Heroes of Maidan Street, 79012 Lviv, Ukraine

Download this article

Abstract. We report on preparation procedures and thermoluminescent properties of undoped and Ag-doped lithium triborate (LiB3O5) pyroceramics. They are prepared using a technique of special annealing of LiB3O5 glass. X-ray diffraction studies of our pyroceramic reveal formation of a large number of nanosized crystallites within amorphous matrix. The crystalline structure and the nature of thermoluminescence in the LiB3O5 pyroceramic are discussed. We demonstrate that this pyroceramic represents a material promising for radiation dosimetry.

Keywords: lithium triborate, glasses, pyroceramic, thermoluminescence, radiation dosimeters

UDC: 535.37
Ukr. J. Phys. Opt. 20 159-167
doi: 10.3116/16091833/20/4/159/2019
Received: 23.09.2019

Анотація. Досліджено процедури приготування та термолюмінесцентні властивості пірокераміки триборату літію (LiB3O5), легованої Ag. Її виготовлено за технологією спеціального відпалу скла LiB3O5. Рентгенівські дифракційні дослідження пірокераміки виявили факт формування в аморфній матриці значної кількості нанорозмірних кристалітів. Обговорено кристалічну структуру та природу термолюмінесценції в пірокераміці LiB3O5. Продемонстровано, що вона є матеріалом, перспективним для радіаційної дозиметрії.

REFERENCES
  1. Driscoll M, Francis T and Richard J, 1984. The response of thermoluminescent materials to beta radiation. Radiat. Prot. Dosimetry. 9: 295-298. doi:10.1093/oxfordjournals.rpd.a083113
  2. Fox P, Akber R and Pescott J, 1988. Spectral characteristics of six phosphors used in thermo¬luminescence dosimetry. J. Phys. D. 21: 189-193. doi:10.1088/0022-3727/21/1/026
  3. Noh A, Amin Y, Mahat R and Bradley D, 2001. Investigation of some commercial TLD chips/discs as UV dosimeters. Radiat. Phys. Chem. 61: 497-499. doi:10.1016/S0969-806X(01)00313-9
  4. Schulman J, Kirk R and West E. Use of lithium borate for thermoluminescence dosimetry. In: Proc. USAEC Symp. Ser. 650637 (1967), p. 113.
  5. Sastry B and Hummel F, 1958. Studies in lithium oxide systems: I, Li2O B2O3-B2O3. J. Amer. Ceram. Soc. 41: 7-17. doi:10.1111/j.1151-2916.1958.tb13496.x
  6. Beturne E and Touboul M, 1997. Synthesis of lithium borates (B/Li≥3) as LiB3O5 by dehydration of hydrated precursors. J. Alloys Comp. 255: 91-97. doi:10.1016/S0925-8388(96)02819-8
  7. Moryc U and Ptak W, 1999. Infrared spectra of β-BaB2O4 and LiB3O5: new nonlinear optical materials. J. Mol. Struct. 511: 241-249. doi:10.1016/S0022-2860(99)00164-7
  8. Sabharwal S, Tiwari B and Sangeeta, 2003. Effect of highest temperature invoked on the crystallization of LiB3O5 from boron-rich solution. J. Cryst. Growth. 249: 502-506. doi:10.1016/S0022-0248(02)02242-X
  9. Ozdemir Z, Ozbaygly G, Kizilyalli M and Yilmaz A, 2004. Synthesis and characterization of lithium triborate. Physicochem. Probl. Min. Proc. 38: 321-327.
  10. Depci T, Ozbaygly G and Yilmaz A, 2010. Comparison of different synthesis methods to produce lithium triborate and their effects on its thermoluminescent property. Metall. Mater. Trans. A. 41: 2584-2594. doi:10.1007/s11661-010-0341-0
  11. Knitel M, Dorenbos P, van Eijk W, Plasteig B, Vianc B, Kahn-Harary A and Vivien D, 2000. Photoluminescence and scintillation/thermoluminescence yields of several Ce3+ and Eu2+ activated borates. Nucl. Instr. Meth. A. 443: 364-374. doi:10.1016/S0168-9002(99)01154-7
  12. El-Faramawy N, El-Kamesy S, El-Agramy A and Metwally G, 2000. The dosimetric properties of in-house prepared copper doped lithium borate examined using the TL-technique. Radiat. Phys. Chem. 58: 9-13. doi:10.1016/S0969-806X(99)00361-8
  13. M. Prokic, 2001. Lithium borate solid TL detectors. Radiat. Meas. 33: 393-396. doi:10.1016/S1350-4487(01)00039-7
  14. Depci T, Ozbaygly G and Yilmaz A, 2011. Synthesis and thermoluminescence properties of rare earth oxides (Y, Ce-Lu) doped lithium triborate. J. Rare Earths. 29: 618-622. doi:S1002-0721(10)60509-1
  15. Ozdemir Z, Ozbaygly G and Yilmaz A, 2007. Investigation of thermoluminescence properties of metal oxide doped lithium triborate. J. Mat. Sci. 42: 8501-8508. doi:10.1007/s10853-007-1746-z
  16. Kafadar V, Yazici A and Yildirim R, 2009. Determination of trapping parameters of dosimetric thermoluminescent glow peak of lithium triborate (LiB3O5) activated by aluminum. J. Lumin. 129: 710-714. doi:10.1016/j.jlumin.2009.01.017
  17. Adamiv V, Burak Ya, Girnyk I, Kasperchyk J, Kityk I and Teslyuk I, 1997. The growth and properties of K- and Ag-doped Li2B4O7 single crystals. Funct. Mater. 4: 415-418.
  18. Burak Ya, Adamiv V, Antonyak O, Malynych S, Pidzyrailo M and Teslyuk I, 2005. Thermoluminescence in doped single crystals Li2B4O7:A (A = Cu, Ag). Ukr. J. Phys. 50: 1153-1158.
  19. Antonyak O, Adamiv V, Burak Ya and Teslyuk I, 2002. Thermoluminescence of doped Li2B4O7 single crystals. Funct. Mater. 9: 452-456.
  20. Adamiv V, Antonyak O, Burak Ya, Pidzyrailo M and Teslyuk I, 2005. Model of TSL-centers in Li2B4O7:A (A = Cu, Ag) single crystals. Funct. Mater. 12: 278-281.
  21. Brant A, Kananan B, Murari M, McClory J, Petrosky J, Adamiv V, Burak Ya, Dowben P and Halliburton L, 2011. Electron and hole traps in Ag-doped lithium tetraborate (Li2B4O7) crystals. J. Appl. Phys. 110: 093719-7. doi:10.1063/1.3658264
  22. Brant A, Buchanan D, McClory J, Adamiv V, Burak Ya, Halliburton L and Giles N, 2014. Photoluminescence from Ag2+ ions in lithium tetraborate (Li2B4O7) crystals. J. Lumin. 153: 79-84. doi:10.1016/j.jlumin.2014.03.008
  23. Sontakke A, Biswas K, Tarafder A, Sen R and Annapurna A, 2011. Broadband Er3+ emission in highly nonlinear bismuth modified zinc-borate glasses. Opt. Mater. Express. 1: 344-356. doi:10.1364/OME.1.000344
  24. Padlyak B, Mudry S, Kulyk Y, Drzewiecki A, Adamiv V, Burak Ya and Teslyuk I, 2012. Synthesis and X-ray structural investigation of undoped borate glasses. Mater. Sci. (Poland). 30: 264-273. doi:10.2478/s13536-012-0032-1
  25. Randall J and Wilkins M, 1945. Phosphorescence and electron traps. I. The study of trap distri¬butions. Proc. Roy. Soc. London, Ser. A. 184: 366-389. doi:10.1098/rspa.1945.0024
  26. Ogorodnikov I, Kruzhalov A, Radzhabov E and Isaenko L, 1999. Luminescent properties of crystalline lithium triborate LiB3O5. Phys. Sol. State. 41: 197-201. doi:10.1134/1.1130754
  27. Zachariasen W, 1964. The crystal structure of lithium metaborate. Acta Cryst. 17: 749-751. doi:10.1107/S0365110X64001839
  28. Burak Ya V, Moroz I Ye, 2003. Isostructural Phase transition in Li2B4O7. Physics and Chemistry of Glasses. 44: 241–243
(c) Ukrainian Journal of Physical Optics