Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Elasto-optic coefficients of KGd(WO4)2 crystals

Martynyuk-Lototska I., Dudok T., Krupych O., Mys O. and Vlokh R.

Vlokh Institute of Physical Optics, 23 Dragomanov Street, 79005 Lviv, Ukraine

Download this article

Abstract. The modules of ten components of the elasto-optic tensor for KGd(WO4)2 crystals have been determined using a Dixon–Cohen method. We have found that some of the elasto-optic components of these crystals reach notably high values. Being combined with the fact of high acoustic-wave velocity, this should imply short response times of the acousto-optic devices based on KGd(WO4)2, provided that the acousto-optic figure of merit remains as high as that calculated in the present work, (32.6±4.5)×10–15 s3/kg. 

Keywords: KGd(WO4)2 crystals, elasto-optic coefficients, acousto-optics

UDC: 535.551+535.421
Ukr. J. Phys. Opt. 20 98-105
doi: 10.3116/16091833/20/3/98/2019
Received: 06.06.2019

Анотація. Методом Діксона-Коена в роботі визначено модулі десяти компонент пружно-оптичного тензора кристалів KGd(WO4)2. Виявлено, що деякі з компонент досягають високого значення, що разом з високими швидкостями поширення акустичних хвиль може привести до значної швидкодії акусто-оптичних пристроїв на основі кристалів KGd(WO4)2 при порівняно великих значеннях коефіцієнта акусто-оптичної якості ((32.6±4.5)×10–15 с3/кг). 

REFERENCES
  1. Pollnau M, Romanyuk YE, Gardillou F, Borca C N, Griebner U, Rivier S and Petrov V, 2007. Double tungstate lasers : from bulk toward on-chip integrated waveguide devices. IEEE J. Sel. Top. Quantum Electron. 13: 661-671. doi:10.1109/JSTQE.2007.896094
  2. Ustimenko NS, Gulin AV, 2002. New self-frequency converted Nd3+: KGd(WO4)2 Raman lasers. Quant. Electron. 32: 229-231. doi:10.1070/QE2002v032n03ABEH002168
  3. Grasiuk AZ, Kurbasov SV, Losev LL, 2004. Picosecond parametric Raman laser based on KGd(WO4)2 crystal. Optics Commun. 240: 239-244. doi:10.1016/j.optcom.2004.06.029
  4. Kaminskii AA, Crystalline Lasers: Physical Processes and Operating Schemes, New York: CRC Press, (1996).
  5. Senthil Kumaran A, Lakshmi Chandru A, Moorthy Babu S, Bhaumik I, Ganesamoorthy S, Karnal AK, Wadhawan VK, Ichimura M, 2005. Crystal growth of pure and doped-KGd(WO4)2 and their characterization for laser applications. Journ Cryst. Growth 275: e2117-e2121 doi:10.1016/j.jcrysgro.2004.11.297
  6. Basiev TT, Osiko VV, Prokhorov AM, Dianov EM, 2003. Crystalline and fiber Raman lasers. In: Sorokina I.T., Vodopyanov K.L. (eds) Solid-State Mid-Infrared Laser Sources. Topics in Applied Physics, 89: 359-408. Springer, Berlin, Heidelberg. doi:10.1007/3-540-36491-9_8
  7. Mochalov IV, 1997. Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2:Nd3+ - (KGW: Nd). Opt. Eng. 36: 1660-1669. doi:10.1117/1.601185
  8. Pujol MC, Rico M, Zaldo C, Sol'e R, Nikolov V, Solans X, Aguilo' M, Dı'az F, 1999. Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)2 single crystals. Appl. Phys. B 68: 187-197. doi:10.1007/s003400050605
  9. International Tables for Crystallography, Vol. A., 3rd edn., ed. byT. Hanh, for the IUCr by D. Reidel Pu. Company., 1992.
  10. Mazur M M, Velikovskii D Yu, Kuznetsov F A, Mazur L I, Pavlyuk A A, Pozhar V E, and Pustovoit V I, 2012. Elastic and photoelastic properties of KGd(WO4)2 single crystals. Acoust. Phys., 58: 658-665. doi:10.1134/S1063771012060103
  11. Velikovskiy D Yu, Pozhar V E, Acousto-optics devices for high-power laser beam. WDS'12 Proceedings of Contributed Papers, Part III, 65-68, 2012.
  12. Mazur MM, Mazur LI, Pozhar VE, 2015. Optimum configuration for acousto-optical modulator made of KGW. Phys. Proc. 70: 741 - 744. doi:10.1016/j.phpro.2015.08.119
  13. Romain Cattoor, Inka Manek-Hönninger, Marc Tondusson, Philippe Veber, Todor K. Kalkandjiev, Daniel Rytz, Lionel Canioni, Marc Eichhorn, 2014. Wavelength dependence of the orientation of optic axes in KGW. Appl. Phys. B - Laser and Optics, Springer Verlag, 116: 831-836. doi:10.1007/s00340-014-5769-2
  14. Sirotin Yu I and Shaskolskaya M P. Fundamentals of crystal physics. Moscow: Mir (1982).
  15. Dixon RW and Cohen MG, 1966. A new technique for measuring magnitudes of photoelastic tensors and its application to lithium niobate. Appl.Phys.Letters. 8: 205-207 doi:10.1063/1.1754556
  16. Martynyuk-Lototska I, Dudok T, Mys O, Grabar A Vlokh R, 2019. Elasto-optic coefficients of Sn2P2S6 crystals determined by Dixon-Cohen method. Ukr.J.Phys.Opt. 20: 54-59 doi:10.3116/16091833/20/2/54/2019
  17. Magdich L N, Molchanov V Ya, Acoustooptic devices and their applications. Gordon and Breach Science Pub., (1989).
  18. Filippov VV, Kuleshov NV, Bodnar IT, 2007. Negative thermo-optical coefficients and athermal directions in monoclinic KGd(WO4)2 and KY(WO4)2 laser host crystals in the visible region. Appl. Phys. B 87: 611-614. doi:10.1007/s00340-007-2666-y
  19. Oksana Mys, Dmitro Adamenko, Oleg Krupych, and Rostyslav Vlokh, 2018. Effect of deviation from purely transverse and longitudinal polarization states of acoustic waves on the anisotropy of acousto-optic figure of merit: the case of Tl3AsS4 crystals. Appl. Opt. 57: 8320-8330. doi:10.1364/AO.57.008320
(c) Ukrainian Journal of Physical Optics
Flag Counter