Home
page
Other articles
in this issue |
Real-time monitoring
of high-power fibre-laser cutting for different types of materials
1Uğur Karanfil,
2Uğur
Yalçın
1Department of R&D, Durmazlar, Electrical-Electronic
Engineering Department, Bursa Uludag University, 16059 Bursa,
Turkey
2Electrical-Electronic Engineering Department,
Bursa Uludag University, 16059 Nilufer, Bursa, Turkey; E-mail: uyalcin@uludag.edu.tr
Download this
article
Abstract. Changes in gas pressure or cutting-head focus, as well
as material warming can usually occur during metals processing, thus imposing
insufficient quality of the resulting materials. These problems imply quality
deterioration for both laser welding and laser cutting and cause the losses
in terms of both time and cost. The primary aim of the present study is
to solve these problems with special software. We discuss the effects of
laser power, nozzle type, cutting speed and assisting-gas pressure on the
quality characteristics of cut materials. Piercing and cutting processes
are experimentally performed on the samples of stainless steel, aluminium
and mild steel with the thicknesses 8, 12 and 20 mm, respectively. For
each of these materials, we determine experimentally ‘decision times’
and analog-voltage thresholds corresponding to the material-surface temperature
or the light intensity and then incorporate these parameters into the algorithm.
The tests have demonstrated that our monitoring-based system is more successful
than the standard metals-processing systems.
Keywords: materials processing, fibre lasers,
laser cutting, laser piercing, cutting parameter
UDC: 621.9.02+535.8
Ukr. J. Phys. Opt. 20 60-72
doi: 10.3116/16091833/20/2/72/2019
Received: 13.01.2019
Анотація. Зазвичай під час обробки
металів мають місце зміна тиску газу або
фокусу ріжучої головки, а також нагрівання
матеріалу, що призводить до недостатньої
якості отриманих матеріалів. Ці проблеми
спричиняють погіршення якості лазерного
зварювання і лазерного різання, а також
викликають втрати часу і коштів. Основна
мета цього дослідження – розв’язання
цих проблем за допомогою спеціального
програмного забезпечення. Нами розглянуто
вплив потужності лазера, типу сопла, швидкості
різання і тиску допоміжного газу на характеристики
якості розрізаних матеріалів. Процеси
свердління та різання здійснено експериментально
на зразках з нержавіючої сталі, алюмінію
і м’якої сталі відповідно з товщинами
8, 12 і 20 мм. Для кожного з цих матеріалів
експериментально визначено «часи рішення»
і пороги аналогової напруги, які відповідають
температурі поверхні матеріалу або інтенсивності
світла, а потім включено ці параметри в
алгоритм. Тести продемонстрували, що така
система моніторингу успішніша за стандартні
системи обробки металів
|
|
REFERENCES
-
Xianghui Yin, Rui Wang, Shaoxin Wang, Yukun Wang, Chengbin Jin, Zhaoliang
Cao and Li Xuan, 2018. Evaluation of the communication quality of free-space
laser communication based on the power-in-the-bucket method. Appl. Opt.
57: 573–581. doi:10.1364/AO.57.000573
-
Serebryakov V A, Boĭko É V, Petrishchev N N and Yan A V, 2010. Medical
applications of mid-IR lasers. Problems and prospects. J. Opt. Technol.
77: 6–17. doi:10.1364/JOT.77.000006
-
Izawa Y, Miyanaga N, Kawanaka J and Yamakawa K, 2008. High power lasers
and their new applications. J. Opt. Soc. Korea. 12: 178–185. doi:10.3807/JOSK.2008.12.3.178
-
Arai A, Xu J, Sohn J and Cho G C, 2011. Applications of femtosecond fiber
lasers in material processing. 12th European Quantum Electronics Conf.
(CLEO EUROPE/EQEC), 1.
-
Karanfil U and Yalçin U, 2016. Characteristic of laser cutting observation
technology and applications. In: National Conf. on Electrical, Electronics
and Biomedical Eng., 2016, pp. 257–261.
-
Born M and Wolf E, Principles of optics, VIIth Expanded Ed. Cambridge:
Cambridge University Press, (1999).
-
Sarnık M and Yalçın U, 2017. Uniform scattered fields from a perfectly
conducting parabolic reflector with modified theory of physical optics.
Optik. 135: 320–326. doi:10.1016/j.ijleo.2017.01.089
-
Sarnık M and Yalçın U, 2016. Modified theory of physical optics and
solution for scattering fields from a perfectly conducting parabolic reflector.
In: IEEE Int. Conf. on Math. Methods in Electromagnetic Theory (MMET),
2016. pp. 349–352. doi:10.1109/MMET.2016.7544063
-
Wandera C and Kujanpaa V, 2010. Characterization of the melt removal rate
in laser cutting of thick-section stainless steel. J. Laser Appl. 22: 62–70.
doi:10.2351/1.3455824
-
Sobih M, Crouse P L and Li L, 2008. Striation-free fibre laser cutting
of mild steel sheets. Appl. Phys. A. 90: 171–174. doi:10.1007/s00339-007-4247-7
-
Kovalenko V and Zhuk R, 2004. Systemized approach in laser industrial systems
design. J. Mater. Proc. Technol. 149: 553–556. doi:10.1016/j.jmatprotec.2004.02.020
-
Jezeršek M, Gruden V and Možina J, 2004. High-speed measurements of steel-plate
deformations during laser surface processing. Opt. Express. 12: 4905–4911.
doi:10.1364/OPEX.12.004905
-
Fox M D, French P, Peters C, Hand D P and Duncan P J D C, 2002. Applications
of optical sensing for laser cutting and drilling. Appl. Opt. 41: 4988–4995.
doi:10.1364/AO.41.004988
-
Ahn D G, Byun K W and Kang M C, 2010. Thermal characteristics in the cutting
of inconel 718 superalloy using CW Nd:YAG laser. J. Mater. Sci. & Technol.
26: 362–366. doi:10.1016/S1005-0302(10)60059-X
-
Lan H, Wang W, Shangguan Y and Lin S, 2011. Fundamental studies on high
power fiber laser cutting performance of 30 mm thick carbon steel plate.
In: Strategic Technology (IFOST), 6th IEEE Int. Forum, 2011. pp. 6–11.
-
Urguplu M and Koksal S, 2015. The effect of laser cutting process parameters
on the quality of metallic components academic platform, SITES, 868.
-
Rajendran N, An experimental and theoretical study of heat transfer effects
during a laser-cutting process. Iowa State University, Dissertation, (1990).
-
Anon., Facts about: laser cutting techniques, AGA Group Ltd, 4–12.
-
John C I. Laser processing of engineering materials, Elsevier-Butterwort-
Heinemann, 347–365 (2005).
-
Ivarson A, On the physics and chemical thermodynamics of laser cutting.
Luleå tekniska universitet, Doct. Thesis, (1993).
-
Sundar M, Nath A K, Bandyopadhyay D K, Chaudhuri S P, Dey P K, Misra D,
2009. Effect of process parameters on the cutting quality in lasox cutting
of mild steel. Int. J. Adv. Manufacturing Technol. 40: 865–874. doi:10.1007/s00170-008-1413-9
-
Ivarson A, Powell J, Kamalu J and Magnusson C, 1994. The oxidation dynamics
of laser cutting of mild steel and the generation of striations on the
cut edge. J. Mater. Process. Technol. 40: 359–374. doi:10.1016/0924-0136(94)90461-8
-
Gabzdyl J T, 1996. Effects of gases on laser cutting of stainless steels.
ICALEO, C39–C44.
-
Dahv A, Kliner V, Bell J and Sheehan L, 2016. Fiber laser allows processing
of highly reflective materials. Industrial Laser Solutions. 31: 13–14.
-
Alsoufi M S, Suker D K, Alsabban A S and Azam S, 2016. Experimental study
of surface roughness and micro-hardness obtained by cutting carbon steel
with abrasive WaterJet and laser beam Technologies. Amer. J. Mech. Eng.
4: 173–181.
-
Tani G, Tomesani L, Campana G and Fortunato A, 2004. Quality factors assessed
by analytical modelling in laser cutting. Thin Solid Films. 453: 486–491.
doi:10.1016/j.tsf.2003.11.260
-
Schulz W, Kostrykin V, Sen M N, Michel J, Petring D, Kreutz E W and Poprawedag
R, 1999. Dynamics of ripple formation and melt flow in laser beam cutting.
J Phys D: Appl. Phys. 32: 1219–1228. doi:10.1088/0022-3727/32/11/307
(c) Ukrainian Journal
of Physical Optics |