Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Real-time monitoring of high-power fibre-laser cutting for different types of materials

1Uğur Karanfil, 2Uğur Yalçın

1Department of R&D, Durmazlar, Electrical-Electronic Engineering Department,   Bursa Uludag University, 16059 Bursa, Turkey
2Electrical-Electronic Engineering Department, Bursa Uludag University,  16059 Nilufer, Bursa, Turkey; E-mail: uyalcin@uludag.edu.tr 
 

Download this article

Abstract. Changes in gas pressure or cutting-head focus, as well as material warming can usually occur during metals processing, thus imposing insufficient quality of the resulting materials. These problems imply quality deterioration for both laser welding and laser cutting and cause the losses in terms of both time and cost. The primary aim of the present study is to solve these problems with special software. We discuss the effects of laser power, nozzle type, cutting speed and assisting-gas pressure on the quality characteristics of cut materials. Piercing and cutting processes are experimentally performed on the samples of stainless steel, aluminium and mild steel with the thicknesses 8, 12 and 20 mm, respectively. For each of these materials, we determine experimentally ‘decision times’ and analog-voltage thresholds corresponding to the material-surface temperature or the light intensity and then incorporate these parameters into the algorithm. The tests have demonstrated that our monitoring-based system is more successful than the standard metals-processing systems. 

Keywords: materials processing, fibre lasers, laser cutting, laser piercing, cutting parameter

UDC: 621.9.02+535.8
Ukr. J. Phys. Opt. 20 60-72
doi: 10.3116/16091833/20/2/72/2019 
Received: 13.01.2019

Анотація. Зазвичай під час обробки металів мають місце зміна тиску газу або фокусу ріжучої головки, а також нагрівання матеріалу, що призводить до недостатньої якості отриманих матеріалів. Ці проблеми спричиняють погіршення якості лазерного зварювання і лазерного різання, а також викликають втрати часу і коштів. Основна мета цього дослідження – розв’язання цих проблем за допомогою спеціального програмного забезпечення. Нами розглянуто вплив потужності лазера, типу сопла, швидкості різання і тиску допоміжного газу на характеристики якості розрізаних матеріалів. Процеси свердління та різання здійснено експериментально на зразках з нержавіючої сталі, алюмінію і м’якої сталі відповідно з товщинами 8, 12 і 20 мм. Для кожного з цих матеріалів експериментально визначено «часи рішення» і пороги аналогової напруги, які відповідають температурі поверхні матеріалу або інтенсивності світла, а потім включено ці параметри в алгоритм. Тести продемонстрували, що така система моніторингу успішніша за стандартні системи обробки металів
 

REFERENCES
  1. Xianghui Yin, Rui Wang, Shaoxin Wang, Yukun Wang, Chengbin Jin, Zhaoliang Cao and Li Xuan, 2018. Evaluation of the communication quality of free-space laser communication based on the power-in-the-bucket method. Appl. Opt. 57: 573–581. doi:10.1364/AO.57.000573
  2. Serebryakov V A, Boĭko É V, Petrishchev N N and Yan A V, 2010. Medical applications of mid-IR lasers. Problems and prospects. J. Opt. Technol. 77: 6–17. doi:10.1364/JOT.77.000006
  3. Izawa Y, Miyanaga N, Kawanaka J and Yamakawa K, 2008. High power lasers and their new applications. J. Opt. Soc. Korea. 12: 178–185. doi:10.3807/JOSK.2008.12.3.178
  4. Arai A, Xu J, Sohn J and Cho G C, 2011. Applications of femtosecond fiber lasers in material processing. 12th European Quantum Electronics Conf. (CLEO EUROPE/EQEC), 1.
  5. Karanfil U and Yalçin U, 2016. Characteristic of laser cutting observation technology and applications. In: National Conf. on Electrical, Electronics and Biomedical Eng., 2016, pp. 257–261.
  6. Born M and Wolf E, Principles of optics, VIIth Expanded Ed. Cambridge: Cambridge University Press, (1999).
  7. Sarnık M and Yalçın U, 2017. Uniform scattered fields from a perfectly conducting parabolic reflector with modified theory of physical optics. Optik. 135: 320–326. doi:10.1016/j.ijleo.2017.01.089
  8. Sarnık M and Yalçın U, 2016. Modified theory of physical optics and solution for scattering fields from a perfectly conducting parabolic reflector. In: IEEE Int. Conf. on Math. Methods in Electromagnetic Theory (MMET), 2016. pp. 349–352. doi:10.1109/MMET.2016.7544063
  9. Wandera C and Kujanpaa V, 2010. Characterization of the melt removal rate in laser cutting of thick-section stainless steel. J. Laser Appl. 22: 62–70. doi:10.2351/1.3455824
  10. Sobih M, Crouse P L and Li L, 2008. Striation-free fibre laser cutting of mild steel sheets. Appl. Phys. A. 90: 171–174. doi:10.1007/s00339-007-4247-7
  11. Kovalenko V and Zhuk R, 2004. Systemized approach in laser industrial systems design. J. Mater. Proc. Technol. 149: 553–556. doi:10.1016/j.jmatprotec.2004.02.020
  12. Jezeršek M, Gruden V and Možina J, 2004. High-speed measurements of steel-plate deformations during laser surface processing. Opt. Express. 12: 4905–4911. doi:10.1364/OPEX.12.004905
  13. Fox M D, French P, Peters C, Hand D P and Duncan P J D C, 2002. Applications of optical sensing for laser cutting and drilling. Appl. Opt. 41: 4988–4995. doi:10.1364/AO.41.004988
  14. Ahn D G, Byun K W and Kang M C, 2010. Thermal characteristics in the cutting of inconel 718 superalloy using CW Nd:YAG laser. J. Mater. Sci. & Technol. 26: 362–366. doi:10.1016/S1005-0302(10)60059-X
  15. Lan H, Wang W, Shangguan Y and Lin S, 2011. Fundamental studies on high power fiber laser cutting performance of 30 mm thick carbon steel plate. In: Strategic Technology (IFOST), 6th IEEE Int. Forum, 2011. pp. 6–11.
  16. Urguplu M and Koksal S, 2015. The effect of laser cutting process parameters on the quality of metallic components academic platform, SITES, 868.
  17. Rajendran N, An experimental and theoretical study of heat transfer effects during a laser-cutting process. Iowa State University, Dissertation, (1990).
  18. Anon., Facts about: laser cutting techniques, AGA Group Ltd, 4–12.
  19. John C I. Laser processing of engineering materials, Elsevier-Butterwort- Heinemann, 347–365 (2005).
  20. Ivarson A, On the physics and chemical thermodynamics of laser cutting. Luleå tekniska universitet, Doct. Thesis, (1993).
  21. Sundar M, Nath A K, Bandyopadhyay D K, Chaudhuri S P, Dey P K, Misra D, 2009. Effect of process parameters on the cutting quality in lasox cutting of mild steel. Int. J. Adv. Manufacturing Technol. 40: 865–874. doi:10.1007/s00170-008-1413-9
  22. Ivarson A, Powell J, Kamalu J and Magnusson C, 1994. The oxidation dynamics of laser cutting of mild steel and the generation of striations on the cut edge. J. Mater. Process. Technol. 40: 359–374. doi:10.1016/0924-0136(94)90461-8
  23. Gabzdyl J T, 1996. Effects of gases on laser cutting of stainless steels. ICALEO, C39–C44.
  24. Dahv A, Kliner V, Bell J and Sheehan L, 2016. Fiber laser allows processing of highly reflective materials. Industrial Laser Solutions. 31: 13–14.
  25. Alsoufi M S, Suker D K, Alsabban A S and Azam S, 2016. Experimental study of surface roughness and micro-hardness obtained by cutting carbon steel with abrasive WaterJet and laser beam Technologies. Amer. J. Mech. Eng. 4: 173–181.
  26. Tani G, Tomesani L, Campana G and Fortunato A, 2004. Quality factors assessed by analytical modelling in laser cutting. Thin Solid Films. 453: 486–491. doi:10.1016/j.tsf.2003.11.260
  27. Schulz W, Kostrykin V, Sen M N, Michel J, Petring D, Kreutz E W and Poprawedag R, 1999. Dynamics of ripple formation and melt flow in laser beam cutting. J Phys D: Appl. Phys. 32: 1219–1228. doi:10.1088/0022-3727/32/11/307
(c) Ukrainian Journal of Physical Optics