Home
page
Other articles
in this issue |
A new photonic crystal
fibre with low nonlinearity, low confinement loss and improved effective
mode area
1,2Benhaddad
M., 1Kerrour
F., 2Benabbes
O. and 3Saouli
A.
1MoDERNa, Department of Electronic University
of Brother Mentouri Constantine 1, Constantine, Algeria
2LPMS, Department of Physics University of
Brother Mentouri Constantine 1, Constantine, Algeria
3Department of Electronic University of Brother
Mentouri Constantine 1, Constantine, Algeria e-mail: mohamed.benhaddad@yahoo.fr
Download this
article
Abstract. Photonic crystal fibres with large mode areas are widely
employed for reducing the impairments arising from various nonlinear effects.
We suggest a new design of photonic crystal fibres with large effective
mode area. The fibre consists of six air-hole rings with two different
structures and unequal diameters, where the air holes of the third ring
are filled with the substance having high refractive index. Employing a
full vectorial finite-element method, we have found that our structure
exhibits a large effective mode area (up to 3575 µm2 at the
light wavelength of 1200 nm) and low confinement losses (about 5.70×10-3
dB/km at 1550 nm)
Keywords: photonic crystal fibres, finite-element
method, effective mode area
UDC: 535.92
Ukr. J. Phys. Opt. 20 47-53
doi: 10.3116/16091833/20/2/47/2019
Received: 07.11.2018
Анотація. Для усунення недоліків
звичайних волокон, пов’язаних з нелінійними
ефектами, широко використовують волокна
на фотонних кристалах із великою «площею
моди». Ми представляємо нову конструкцію
волокон на фотонних кристалах з великою
ефективною «площею моди». Волокно складається
з шести наповнених повітрям кілець з двома
різними структурами і різними діаметрами,
де повітряні отвори третього кільця заповнені
речовиною, що має високий показник заломлення.
На основі повного векторного методу скінченних
елементів ми зясували, що така структура
виявляє значну ефективну «площу моди»
(до 3575 мкм2 на довжині хвилі світла
1200 нм), а також низькі втрати конфайнменту
(близько 5,70×10–3 дБ/км при 1550 нм).
|
|
REFERENCES
-
Birks T A, Knight J C and Russell P S, 1997. Endlessly single mode photonic
crystal fiber. Opt. Lett. 22: 961–963. doi:10.1364/OL.22.000961
-
Knight J C, Arriaga J, Birks T A, Ortigosa-Blanch A, Wadsworth W J and
Russell P St J, 2000. Anomalous dispersion in photonic crystal fiber. IEEE
Photon. Technol. Lett. 12: 807–809. doi:10.1109/68.853507
-
Broderick N G R, Monro T M, Bennett P J and Richardson D J, 1999. Nonlinearity
in holey optical fibers: measurement and future opportunities. Opt. Lett.
24: 1395–1397. doi:10.1364/OL.24.001395
-
Russell P S, 2006. Photonic-crystal fibers. J. Lightwave Technol. 24: 4729–4749.
https://doi.org/10.1109/JLT.2006.885258
-
Hansryd J, Andrekson P A, Westlund M, Li J and Hedekvist P O, 2002. Fiber-based
optical parametric amplifiers and their applications. IEEE J. Select. Topics
Quant. Electron. 8: 506–520. doi:10.1109/JSTQE.2002.1016354
-
Agrawal G P, Nonlinear fiber optics. 4th Ed. San Diego: Academic (2006).
-
Belhadj W, AbdelMalek F and Bouchriha H, 2006. Characterization and study
of photonic crystal fibres with bends. Mater. Sci. Eng. 26: 578–579.
doi:10.1016/j.msec.2005.10.004
-
Limpert J, Schreiber T, Nolte S, Zellmer H, Tunnermann T, Iliew R, Lederer
F, Broeng J, Vienne G, Petersson A, and Jakobsen C, 2003. Highpower air-clad
large-mode-area photonic crystal fiber laser. Opt. Express. 11: 818–823.
doi:10.1364/OE.11.000818
-
Zolla F, Renversez G, Nicolet A, Kuhlmey B, Guenneau S, and Felbacq D.
Foundations of photonic crystal fibres. London: Imperial College Press
(2005). https://doi.org/10.1142/p367
-
Slusher R E and Eggleton B J, Nonlinear photonic crystals. Berlin: Springer
Verlag (2003). doi:10.1007/978-3-662-05144-3
-
Wadsworth W, Percival R, Bouwmans G, Knight J and Russell P S, 2003. High
power air-clad photonic crystal fibre laser. Opt. Express. 11: 48–53.
doi:10.1364/OE.11.000048
-
Ritari T, Niemi T, Wegmuller M, Gisin N, Folkenberg J R, Pettersson A and
Ludvigsen H, 2003. Polarization-mode dispersion of large mode-area photonic
crystal fibers. J. Opt. Commun. 226: 233–239. doi:10.1016/j.optcom.2003.09.015
-
Knight J C, Birks T A, Cregan R F, Russell P S and Sandro J P, 1998. Large
mode area photonic crystal fibre. Electron. Lett. 34: 1347 – 1348. doi:10.1049/el:19980965
-
Gates J C, Hillman C W J, Baggett J C, Furusawa K, Monro T M and Brocklesby
W S, 2004 Structure and propagation of modes of large mode area holey fibers.
Opt. Express. 12: 847–852. doi:10.1364/OPEX.12.000847
-
Abdelaziz I, AbdelMalek F, Ademgil H, Haxha S, Gorman T and Bouchriha H,
2010. Enhanced effective area photonic crystal fiber with novel air hole
design. J. Lightwave Technol. 28: 2810–2817. doi:10.1109/JLT.2010.2064758
-
Rostami A and Soofi H, 2011. Correspondence between effective mode area
and dispersion variations in defected core photonic crystal fibers. J.
Lightwave Technol. 29: 234–241. doi:10.1109/JLT.2010.2100808
-
Haxha S and Ademgil H, 2008. Novel design of photonic crystal fibres with
low confinement losses, nearly zero ultra-flatted chromatic dispersion,
negative chromatic dispersion and improved effective mode area. Opt. Commun.
281: 278–286. doi:10.1016/j.optcom.2007.09.041
-
Ademgil H and Haxha S, 2008. Highly birefringent photonic crystal fibers
with ultralow chromatic dispersion and low confinement losses. IEEE J.
Lightwave Technol. 26: 441–448. doi:10.1109/JLT.2007.912508
-
Selleri S, Vincetti L, Cucinotta A and Zoboli M, 2001. Complex FEM modal
solver of optical waveguides with PML boundary conditions. Opt. Quant.
Electron. 33: 359–371. doi:10.1023/A:1010886632146
-
Pourmahyabadi M and Sh Mohammad Nejad, 2009. Numerical analysis of index-guiding
photonic crystal fibers with low confinement loss and ultra-flattened dispersion
by FDFD method. Iran. J. Electr. & Electron. Eng. 5: 170–179.
-
Mortensen NA, 2002. Effective area of photonic crystal fibers. Opt. Express.
10: 341–348. doi:10.1364/OE.10.000341
-
Koshiba M and Tsuji Y, 2000. Curvilinear hybrid edge/nodal elements with
triangular shape for guided-wave problems. J. Lightwave Technol. 18: 737–743.
doi:10.1109/50.842091
-
Mishra S S and Vinod K, 2011. Singh highly birefringent photonic crystal
fiber with low confinement loss at wavelength 1.55µm. Optik. 122: 1975–1977.
doi:10.1016/j.ijleo.2010.12.012
-
Hameed M F O and Obayya S S A, 2012. Modal analysis of a novel soft glass
photonic crystal fiber with liquid crystal core. J. Lightwave Technol.
30: 96–102. doi:10.1109/JLT.2011.2175436
-
Mishra S S and Singh V K, 2011. Study of non-linear properties of hollow
core photonic crystal fiber. Optik. 122: 687–690. doi:10.1016/j.ijleo.2010.05.008
-
Benhaddad M, Kerrour F and Benabbes O, 2018. Design and analysis of non-linear
properties of photonic crystal fiber with various doping concentration.
J. Phys.: Conf. Ser. 987: 012010. doi:10.1088/1742-6596/987/1/012010
(c) Ukrainian Journal
of Physical Optics |