Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
A new photonic crystal fibre with low nonlinearity, low confinement loss and improved effective mode area

1,2Benhaddad M., 1Kerrour F., 2Benabbes O. and 3Saouli A.

1MoDERNa, Department of Electronic University of Brother Mentouri   Constantine 1, Constantine, Algeria
2LPMS, Department of Physics University of Brother Mentouri Constantine 1,   Constantine, Algeria
3Department of Electronic University of Brother Mentouri Constantine 1,   Constantine, Algeria e-mail: mohamed.benhaddad@yahoo.fr 
 
 

Download this article

Abstract. Photonic crystal fibres with large mode areas are widely employed for reducing the impairments arising from various nonlinear effects. We suggest a new design of photonic crystal fibres with large effective mode area. The fibre consists of six air-hole rings with two different structures and unequal diameters, where the air holes of the third ring are filled with the substance having high refractive index. Employing a full vectorial finite-element method, we have found that our structure exhibits a large effective mode area (up to 3575 µm2 at the light wavelength of 1200 nm) and low confinement losses (about 5.70×10-3 dB/km at 1550 nm)

Keywords: photonic crystal fibres, finite-element method, effective mode area

UDC: 535.92
Ukr. J. Phys. Opt. 20 47-53
doi: 10.3116/16091833/20/2/47/2019
Received: 07.11.2018

Анотація. Для усунення недоліків звичайних волокон, пов’язаних з нелінійними ефектами, широко використовують волокна на фотонних кристалах із великою «площею моди». Ми представляємо нову конструкцію волокон на фотонних кристалах з великою ефективною «площею моди». Волокно складається з шести наповнених повітрям кілець з двома різними структурами і різними діаметрами, де повітряні отвори третього кільця заповнені речовиною, що має високий показник заломлення. На основі повного векторного методу скінченних елементів ми зясували, що така структура виявляє значну ефективну «площу моди» (до 3575 мкм2 на довжині хвилі світла 1200 нм), а також низькі втрати конфайнменту (близько 5,70×10–3 дБ/км при 1550 нм).
 

REFERENCES
  1. Birks T A, Knight J C and Russell P S, 1997. Endlessly single mode photonic crystal fiber. Opt. Lett. 22: 961–963. doi:10.1364/OL.22.000961
  2. Knight J C, Arriaga J, Birks T A, Ortigosa-Blanch A, Wadsworth W J and Russell P St J, 2000. Anomalous dispersion in photonic crystal fiber. IEEE Photon. Technol. Lett. 12: 807–809. doi:10.1109/68.853507
  3. Broderick N G R, Monro T M, Bennett P J and Richardson D J, 1999. Nonlinearity in holey optical fibers: measurement and future opportunities. Opt. Lett. 24: 1395–1397. doi:10.1364/OL.24.001395
  4. Russell P S, 2006. Photonic-crystal fibers. J. Lightwave Technol. 24: 4729–4749. https://doi.org/10.1109/JLT.2006.885258
  5. Hansryd J, Andrekson P A, Westlund M, Li J and Hedekvist P O, 2002. Fiber-based optical parametric amplifiers and their applications. IEEE J. Select. Topics Quant. Electron. 8: 506–520. doi:10.1109/JSTQE.2002.1016354
  6. Agrawal G P, Nonlinear fiber optics. 4th Ed. San Diego: Academic (2006).
  7. Belhadj W, AbdelMalek F and Bouchriha H, 2006. Characterization and study of photonic crystal fibres with bends. Mater. Sci. Eng. 26: 578–579. doi:10.1016/j.msec.2005.10.004
  8. Limpert J, Schreiber T, Nolte S, Zellmer H, Tunnermann T, Iliew R, Lederer F, Broeng J, Vienne G, Petersson A, and Jakobsen C, 2003. Highpower air-clad large-mode-area photonic crystal fiber laser. Opt. Express. 11: 818–823. doi:10.1364/OE.11.000818
  9. Zolla F, Renversez G, Nicolet A, Kuhlmey B, Guenneau S, and Felbacq D. Foundations of photonic crystal fibres. London: Imperial College Press (2005). https://doi.org/10.1142/p367
  10. Slusher R E and Eggleton B J, Nonlinear photonic crystals. Berlin: Springer Verlag (2003). doi:10.1007/978-3-662-05144-3
  11. Wadsworth W, Percival R, Bouwmans G, Knight J and Russell P S, 2003. High power air-clad photonic crystal fibre laser. Opt. Express. 11: 48–53. doi:10.1364/OE.11.000048
  12. Ritari T, Niemi T, Wegmuller M, Gisin N, Folkenberg J R, Pettersson A and Ludvigsen H, 2003. Polarization-mode dispersion of large mode-area photonic crystal fibers. J. Opt. Commun. 226: 233–239. doi:10.1016/j.optcom.2003.09.015
  13. Knight J C, Birks T A, Cregan R F, Russell P S and Sandro J P, 1998. Large mode area photonic crystal fibre. Electron. Lett. 34: 1347 – 1348. doi:10.1049/el:19980965
  14. Gates J C, Hillman C W J, Baggett J C, Furusawa K, Monro T M and Brocklesby W S, 2004 Structure and propagation of modes of large mode area holey fibers. Opt. Express. 12: 847–852. doi:10.1364/OPEX.12.000847
  15. Abdelaziz I, AbdelMalek F, Ademgil H, Haxha S, Gorman T and Bouchriha H, 2010. Enhanced effective area photonic crystal fiber with novel air hole design. J. Lightwave Technol. 28: 2810–2817. doi:10.1109/JLT.2010.2064758
  16. Rostami A and Soofi H, 2011. Correspondence between effective mode area and dispersion variations in defected core photonic crystal fibers. J. Lightwave Technol. 29: 234–241. doi:10.1109/JLT.2010.2100808
  17. Haxha S and Ademgil H, 2008. Novel design of photonic crystal fibres with low confinement losses, nearly zero ultra-flatted chromatic dispersion, negative chromatic dispersion and improved effective mode area. Opt. Commun. 281: 278–286. doi:10.1016/j.optcom.2007.09.041
  18. Ademgil H and Haxha S, 2008. Highly birefringent photonic crystal fibers with ultralow chromatic dispersion and low confinement losses. IEEE J. Lightwave Technol. 26: 441–448. doi:10.1109/JLT.2007.912508
  19. Selleri S, Vincetti L, Cucinotta A and Zoboli M, 2001. Complex FEM modal solver of optical waveguides with PML boundary conditions. Opt. Quant. Electron. 33: 359–371. doi:10.1023/A:1010886632146
  20. Pourmahyabadi M and Sh Mohammad Nejad, 2009. Numerical analysis of index-guiding photonic crystal fibers with low confinement loss and ultra-flattened dispersion by FDFD method. Iran. J. Electr. & Electron. Eng. 5: 170–179.
  21. Mortensen NA, 2002. Effective area of photonic crystal fibers. Opt. Express. 10: 341–348. doi:10.1364/OE.10.000341
  22. Koshiba M and Tsuji Y, 2000. Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems. J. Lightwave Technol. 18: 737–743. doi:10.1109/50.842091
  23. Mishra S S and Vinod K, 2011. Singh highly birefringent photonic crystal fiber with low confinement loss at wavelength 1.55µm. Optik. 122: 1975–1977. doi:10.1016/j.ijleo.2010.12.012
  24. Hameed M F O and Obayya S S A, 2012. Modal analysis of a novel soft glass photonic crystal fiber with liquid crystal core. J. Lightwave Technol. 30: 96–102. doi:10.1109/JLT.2011.2175436
  25. Mishra S S and Singh V K, 2011. Study of non-linear properties of hollow core photonic crystal fiber. Optik. 122: 687–690. doi:10.1016/j.ijleo.2010.05.008
  26. Benhaddad M, Kerrour F and Benabbes O, 2018. Design and analysis of non-linear properties of photonic crystal fiber with various doping concentration. J. Phys.: Conf. Ser. 987: 012010. doi:10.1088/1742-6596/987/1/012010
(c) Ukrainian Journal of Physical Optics