Ukrainian Journal of Physical Optics 

Home page

Other articles 

in this issue
Analytical relations for the strain tensor components caused by acoustic waves with arbitrary wave vector directions in crystals: acousto-optic applications 

Krupych O., Adamenko D. and Vlokh R.

Vlokh Institute of Physical Optics, 23 Dragomanov Street, 79005, Lviv, Ukraine

Download this article

Abstract. Analytical relations for the strain tensor components caused by acoustic waves with arbitrary wave vector directions in crystals are derived. Our approach involves standard rotation matrices and cross sections of the indicative surfaces of Christoffel tensor, which are made by the planes perpendicular to the wave vectors..

Keywords: acousto-optics, acoustic waves, strain tensor

PACS: 78.20.Hp, 62.65.+k, 62.20.Fe
UDC: 534.231.2+535.42
Ukr. J. Phys. Opt. 20 16-22

doi: 10.3116/16091833/20/1/16/2019

Received: 04.02.2019

Анотація. Одержано аналітичні співвідношення для компонент тензора деформацій, спричинених акустичними хвилями з довільними напрямками хвильового вектора в кристалах. Підхід базується на стандартних поворотних матрицях і поперечних перерізах індикативних поверхонь тензора Крістоффеля, зроблених площинами, перпендикулярними до хвильового вектора.

  1. Balakshyi V I, Paryhyn V N and Chyrkov L E. Physical foundations of acoustooptics. Moscow: Radio i Svyaz (1985).
  2. Sirotin Yu I and Shaskolskaya M P. Fundamentals of crystal physics. Moscow: Mir (1982).
  3. Buryy O, Andrushchak N, Ratych A, Demyanyshyn N, Mytsyk B and Andrushchak A, 2017. Global maxima for the acoustooptic effect in SrB4O7 crystals. Appl. Opt. 56: 1839–1845. doi:10.1364/AO.56.001839
  4. Andrushchak A S, Chernyhivsky E M, Gotra Z Yu, Kaidan M V, Kityk A V, Andrushchak N A, Maksymyuk T A, Mytsyk B G and Schranz W, 2010. Spatial anisotropy of the acousto-optical efficiency in lithium niobate crystals. J. Appl. Phys. 108: 103118. doi:10.1063/1.3510518
  5. Zyuryukin Yu A, Zavarin S V and Yulaev A N, 2009. Characteristic features of wideband anisotropic light diffraction in lithium–niobate crystal by a longitudinal acoustic wave. Opt. Spectrosc. 107: 152–156. doi:10.1134/S0030400X09070224
  6. Fujii Y and Hayashi H, 1977. Acousto-optic tunable filter using LiNbO3 crystals. Proc. SPIE. 99: 110–115. doi:10.1117/12.955312 
  7. Mys O, Krupych O and Vlokh R, 2018. Anisotropy of acousto-optic figure of merit in lithium tetraborate crystals. J. Mod. Opt. 65: 1486–1494. doi:10.1080/09500340.2018.1455906
  8. Mys O, Kostyrko M, Krupych O and Vlokh R, 2015. Anisotropy of the acousto-optic figure of merit for LiNbO3 crystals: isotropic diffraction. Appl. Opt. 54: 8176–8186. doi:10.1364/AO.54.008176 
  9. Mys O, Krupych O and Vlokh R, 2016. Anisotropy of an acousto-optic figure of merit for NaBi(MoO4)2 crystals. Appl. Opt. 55: 7941–7955. doi:10.1364/AO.55.007941
  10. Mys O, Adamenko D, Krupych O and Vlokh R, 2018. Effect of deviation from purely transverse and longitudinal polarization states of acoustic waves on the anisotropy of acousto-optic figure of merit: The case of Tl3AsS4 crystals. Appl. Opt. 57: 8320–8330. doi:10.1364/AO.57.008320
(c) Ukrainian Journal of Physical Optics