Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Study of optical absorption in TlGaSe2:Zn2+ single crystals

1Makhnovets G.V., 1Myronchuk G.L., 2Piskach L.V., 
1Vidrynskyi B.V. and 1Kevshyn A.H.

1Department of Physics, Lesya Ukrainka Eastern European National University,   13 Voli Avenue, 43025 Lutsk, Ukraine
2Department of Inorganic and Physical Chemistry, Lesya Ukrainka Eastern   European National University, 13 Voli Avenue, 43025 Lutsk, Ukraine

Download this article

Abstract. We report the results of experimental studies for the optical absorption in TlGaSe2:Zn2+ single crystals grown using a modified Bridgman–Stockbarger technique. The absorption measurements at different temperatures are performed with the steps 50 K. The analysis of the experimental data yield in the absorption coefficients of TlGaSe2:Zn varying from 20 to 800 cm–1 in the temperature region 100–300 K. Direct and indirect bandgap values for TlGaSe2:Zn2+ are calculated as functions of temperature. These values are respectively equal to 2.22 and 2.04 eV at 100 K. It is revealed that the spectral dependences of the absorption coefficient in the region 60–130 cm–1 follow the Urbach rule, whereas the corresponding steepness parameter and the Urbach energy increase with increasing temperature.

Keywords: chalcogenides, Urbach energy, direct and indirect bandgaps, steepness parameter

PACS:  42.25.Bs
UDC: 535.343.2
Ukr. J. Phys. Opt. 19 49-59
doi: 10.3116/16091833/19/1/49/2018
Received: 19.12.2017

Анотація. Представлено результати експериментальних досліджень оптичного поглинання монокристалів TlGaSe2:Zn2+, вирощених за модифікованим методом Бріджмена–Стокбаргера. Вимірювання поглинання при різних температурах виконано з кроком 50 К. Аналіз даних показав, що коефіцієнт поглинання TlGaSe2:Zn змінюється в межах від 20 до 800 см–1 у температурному діапазоні 100–300 К. Прямі та непрямі величини ширини забороненої зони розраховано як функції температури. За температури 100 К ці параметри складають відповідно 2,22 і 2,04 еВ. Встановлено, що спектральні залежності коефіцієнта поглинання в області 60–130 см–1 описуються правилом Урбаха, а відповідний параметр крутизни краю поглинання та енергія Урбаха зростають зі зростанням температури. 
 

REFERENCES
  1. Gürbulak B and Duman S, 2008. Urbach tail and optical characterization of gadolinium-doped TlGaSe2 single crystals. Phys. Scripta. 77: 025702. doi:10.1088/0031-8949/77/02/025702
  2. Youssef S B, 1995. Phase transitions and electrical conductivity of TlInS2. Physica A. 215: 176–180. doi:10.1016/0378-4371(94)00266-V
  3. El-Nahass M M, Sallam M M, Samy A R and Ibrahim E M, 2006. Optical, electrical conduction and dielectric properties of TlGaSe2 layered single crystal. Solid State Sci. 8: 488–499. doi:10.1016/j.solidstatesciences.2005.10.020
  4. Abay B, Guder H S, Efeoglu H and Yogurtcu Y K, 2001. Temperature dependence of the optical energy gap and Urbach–Martienssen's tail in the absorption spectra of the layered semiconductor Tl2GaInSe4. J. Phys. Chem. Sol. 62: 747–752. doi:10.1016/S0022-3697(00)00236-5
  5. Guler I, Ambrico M, Ligonzo T and Gasanly N M, 2013. Temperature-dependent absorption edge and photoconductivity of Tl2In2S3Se layered single crystals. J. Alloys Comp. 550: 471–474. doi:10.1016/j.jallcom.2012.10.133
  6. Panich A M and Sardarly R M, 2010. Physical properties of the low-dimensional A3B6 and A3B3C62 compounds. New York: Nova Science Publishers.
  7. Seyidov M Yu, Sahin Y, Erbahar D and Suleymanov R A, 2006. Electret states and current oscillations in the ferroelectric semiconductor TlGaSe2. Phys. stat. sol. (a). 203: 3781–3787. doi:10.1002/pssa.200622236
  8. Panich A M, Ailion D C, Kashida S and Gasanly N, 2004. Gallium and thallium NMR study of phase transitions and incommensurability in the layered semiconductor TlGaSe2. Phys. Rev. B. 69: 245319. doi:10.1103/PhysRevB.69.245319
  9. Delgado G E, Mora A J, Pérez F V and González J, 2007. Growth and crystal structure of the layered compound TlGaSe2. Cryst. Res. Technol. 42: 663–666. doi:10.1002/crat.200610885
  10. Ves S, 1989. Effects of hydrostatic pressure on the fundamental absorption edge of TlGaSe2. Phys. Rev. B. 40: 7892–7897. doi:10.1103/PhysRevB.40.7892
  11. Senturk E, Tumbek L and Mikailov F A, 2005. Dielectric properties of thallium gallium diselenide crystal in the incommensurate phase. Cryst. Res. Technol. 40: 901–904. doi:10.1002/crat.200410455
  12. McMorrow D F, Cowley R A, Hatton P D and Banys J, 1990. The structure of the paraelectric and incommensurate phases of TlGaSe2. J. Phys.: Condens. Matter. 2: 3699. doi:10.1088/0953-8984/2/16/001
  13. Ozdemir S and Bucurgat M, 2014. Photoelectrical properties of TlGaSe2 single crystals. Solid State Sci. 33: 25–31. doi:10.1016/j.solidstatesciences.2014.04.006
  14. Allakhverdiev K R, Aldzhonov M A, Mamedov T G and Salaev E Yu, 1986. Anomalous behaviour of the Urbach edge and phase transitions in TlGaSe2. Sol. State Commun. 58: 295–297. doi:10.1016/0038-1098(86)90087-6
  15. Durnev Yu I, Kulbuzhev B S, Malsagov A U, Rabkin L M, Torgashev V I and Yuzyk Yu I, 1989. Vibrational spectra and phase transitions in layered semiconducting ferroelectrics with TlGaSe2 structure. I. Temperature dependences of parameters of the Raman spectrum lines of TlGaSe2. Phys. stat. sol. (b). 153: 517–527. doi:10.1002/pssb.2221530210
  16. Duman S and Gürbulak B, 2005. Urbach tail and optical absorption in layered semiconductor TlGaSe2(1–x)S2x single crystals. Physica Scripta. 72: 79–86. doi:10.1238/Physica.Regular.072a00079
  17. Gürbulak B, 1999. Growth and absorption properties of Dy-doped and undoped p-type TlGaSe2. Appl. Phys. A. 68: 353–356. doi:10.1007/s003390050902
  18. Grivickas V, Gavryushin V, Grivickas P, Galeckas A, Bikbajevas V and Gulbinas K, 2011. Optical absorption related to Fe impurities in TlGaSe2. Phys. stat. sol. (a). 208: 2186–2192. doi:10.1002/pssa.201026786
  19. Guler I, Ambrico M, Ligonzo T and Gasanly N M, 2013. Temperature dependent absorption edge and photoconductivity of Tl2In2Se3S layered single crystals. J. Alloys Comp. 550: 471–474. doi:10.1016/j.jallcom.2012.10.133
  20. Moss T S, Optical process in semiconductors. London: Butterworths. (1959).
  21. Hanias M, Anagnostopoulos A, Kambas K and Spyridelis J, 1989. On the non-linear properties of TlInX2 (X = S, Se, Te) ternary compounds. J. Phys. B. 160: 154–160. doi:10.1016/0921-4526(89)90050-1
  22. Gurbulak B, 2001. The optical investigation of TlGa0.999Pr0.001Se2 and TlGaSe2 single crystals. Physica B: Cond. Mater 293: 289–296. doi:10.1016/S0921-4526(00)00521-4
  23. Kalomiros J A, Kalkan N, Hanias M, Anagnostopoulos A N and Kambas K, 1995. Optical and photoelectric properties of TlGaSe2 layered crystals. Sol. State Commun. 96: 601–607. doi:10.1016/0038-1098(95)00423-8
  24. Guseinov G D, Aliyev V A and Bagirzade E F, 1985. Defects in TlGaSe2. Mater. Chem. Phys. 13: 541–550. doi:10.1016/0254-0584(85)90004-5
  25. Yang Z, Homewood K P, Finney M S, Harry M A and Reeson K J, 1995. Optical absorption study of ion beam synthesized polycrystalline semiconducting FeSi2. J. Appl. Phys. 78: 1958–1963. doi:10.1063/1.360167
  26. Cody G D, Tiedje T, Abeles B, Brooks B and Goldstein Y, 1981. Disorder and the opticalabsorption edge of hydrogenated amorphus silicon. Phys. Rev. Lett. 47: 1480–1483. doi:10.1103/PhysRevLett.47.1480
  27. Kurik M V, 1971. Urbach rule. Phys. stat. sol. (a). 8: 9–45. doi:10.1002/pssa.2210080102
  28. Mahan G D, 1966. Phonon-broadened optical spectra: Urbach's rule. Phys. Rev. 145: 602–608. doi:10.1103/PhysRev.145.602
  29. Brada Y and Roth M, 1989. Optical absorption of KTa1−xNbxO3 single crystals. Phys. Rev. B. 39: 10402–10405. doi:10.1103/PhysRevB.39.10402
  30. Urbach F, 1953. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92: 1324. doi:10.1103/PhysRev.92.1324
  31. Martienssen H W, 1957. Über die excitonenbanden deralkalihalogenidkristalle J. Phys. Chem. Sol. 2: 257–267. doi:10.1016/0022-3697(57)90070-7
  32. Sumi H and Toyozowa Y, 1971. Urbach-Martienseen rule and exciton trapped momentarily by lattice vibrations. J. Phys. Soc. Japan. 31: 342–358. doi:10.1143/JPSJ.31.342
  33. Myronchuk G L, Davydyuk G E, Parasyuk O V, Khyzhun O Y, Andrievski R A, Fedorchuk A O, Danylchuk S P, Piskach L V and Mozolyuk M Yu, 2013. Tl1–xIn1–xSnxSe2 (x = 0, 0.1, 0.2, 0.25) single-crystalline alloys as promising non-linear optical materials. J. Mater. Sci: Mater. Electron. 24: 3555–3563. doi:10.1007/s10854-013-1285-0
  34. Paucar R, Itsuwa H, Wakita K, Shim Y, Alekperov O and Mamedov N, 2015. Phase transitions and Raman scattering spectra of TlGaSe2. J. Phys: Conf. Ser. 619: 012018. doi:10.1088/1742-6596/619/1/012018
  35. Pankove J I, 1971. Optical processes in semiconductors. New York: Dover.
  36. Piasecki M, Myronchuk G L, Zamurueva O V, Khyzhun O Y, Parasyuk O V, Fedorchuk A O, Albassam A, El-Naggar A M and Kityk I V, 2016. Huge operation by energy gap of novel narrow band gap Tl1−x In1−x BxSe2 (B = Si, Ge): DFT, x-ray emission and photoconductivity studies. Mater. Res. Exp. 3: 025902. doi:10.1088/2053-1591/3/2/025902
  37. Zamurueva O V, Myronchuk G L, Lakshminarayana G, Parasyuk O V, Piskach L V, Fedorchuk A O, AlZayed N S, El-Naggar A M and Kityk I V, 2014. Structural and optical features of novel Tl1–xIn1–xGexSe2 chalcogenide crystals. Opt. Mater. 37: 614–620. doi:10.1016/j.optmat.2014.08.004
  38. Abdullaeva S G, Abdullaev N A, Belenkii G L, Mamedov N T and Suleimanov R A, 1983. Temperature-induced shift of an exciton band and deformation effects in layered TlGaS2 crystals. Fiz. Techn. Poluprov. 17: 1320–1321.
  39. Varshni Y P, 1967. Temperature dependence of the energy gap in semiconductors. Physica 34: 149–154. doi:10.1016/0031-8914(67)90062-6
(c) Ukrainian Journal of Physical Optics