Home
page
Other articles
in this issue |
Study of optical
absorption in TlGaSe2:Zn2+ single crystals
1Makhnovets
G.V., 1Myronchuk
G.L., 2Piskach
L.V.,
1Vidrynskyi
B.V. and 1Kevshyn
A.H.
1Department of Physics, Lesya Ukrainka Eastern
European National University, 13 Voli Avenue, 43025 Lutsk,
Ukraine
2Department of Inorganic and Physical Chemistry,
Lesya Ukrainka Eastern European National University, 13 Voli
Avenue, 43025 Lutsk, Ukraine
Download this
article
Abstract. We report the results of experimental studies for the
optical absorption in TlGaSe2:Zn2+ single crystals
grown using a modified Bridgman–Stockbarger technique. The absorption
measurements at different temperatures are performed with the steps 50
K. The analysis of the experimental data yield in the absorption coefficients
of TlGaSe2:Zn varying from 20 to 800 cm–1 in the
temperature region 100–300 K. Direct and indirect bandgap values for
TlGaSe2:Zn2+ are calculated as functions of temperature.
These values are respectively equal to 2.22 and 2.04 eV at 100 K. It is
revealed that the spectral dependences of the absorption coefficient in
the region 60–130 cm–1 follow the Urbach rule, whereas the
corresponding steepness parameter and the Urbach energy increase with increasing
temperature.
Keywords: chalcogenides, Urbach energy, direct
and indirect bandgaps, steepness parameter
PACS: 42.25.Bs
UDC: 535.343.2
Ukr. J. Phys. Opt.
19 49-59
doi: 10.3116/16091833/19/1/49/2018
Received: 19.12.2017
Анотація. Представлено результати
експериментальних досліджень оптичного
поглинання монокристалів TlGaSe2:Zn2+,
вирощених за модифікованим методом Бріджмена–Стокбаргера.
Вимірювання поглинання при різних температурах
виконано з кроком 50 К. Аналіз даних показав,
що коефіцієнт поглинання TlGaSe2:Zn змінюється
в межах від 20 до 800 см–1 у температурному
діапазоні 100–300 К. Прямі та непрямі величини
ширини забороненої зони розраховано як
функції температури. За температури 100
К ці параметри складають відповідно 2,22
і 2,04 еВ. Встановлено, що спектральні залежності
коефіцієнта поглинання в області 60–130
см–1 описуються правилом Урбаха,
а відповідний параметр крутизни краю поглинання
та енергія Урбаха зростають зі зростанням
температури.
|
|
REFERENCES
-
Gürbulak B and Duman S, 2008. Urbach tail and optical characterization
of gadolinium-doped TlGaSe2 single crystals. Phys. Scripta. 77: 025702.
doi:10.1088/0031-8949/77/02/025702
-
Youssef S B, 1995. Phase transitions and electrical conductivity of TlInS2.
Physica A. 215: 176–180. doi:10.1016/0378-4371(94)00266-V
-
El-Nahass M M, Sallam M M, Samy A R and Ibrahim E M, 2006. Optical, electrical
conduction and dielectric properties of TlGaSe2 layered single crystal.
Solid State Sci. 8: 488–499. doi:10.1016/j.solidstatesciences.2005.10.020
-
Abay B, Guder H S, Efeoglu H and Yogurtcu Y K, 2001. Temperature dependence
of the optical energy gap and Urbach–Martienssen's tail in the absorption
spectra of the layered semiconductor Tl2GaInSe4. J. Phys. Chem. Sol. 62:
747–752. doi:10.1016/S0022-3697(00)00236-5
-
Guler I, Ambrico M, Ligonzo T and Gasanly N M, 2013. Temperature-dependent
absorption edge and photoconductivity of Tl2In2S3Se layered single crystals.
J. Alloys Comp. 550: 471–474. doi:10.1016/j.jallcom.2012.10.133
-
Panich A M and Sardarly R M, 2010. Physical properties of the low-dimensional
A3B6 and A3B3C62 compounds. New York: Nova Science Publishers.
-
Seyidov M Yu, Sahin Y, Erbahar D and Suleymanov R A, 2006. Electret states
and current oscillations in the ferroelectric semiconductor TlGaSe2. Phys.
stat. sol. (a). 203: 3781–3787. doi:10.1002/pssa.200622236
-
Panich A M, Ailion D C, Kashida S and Gasanly N, 2004. Gallium and thallium
NMR study of phase transitions and incommensurability in the layered semiconductor
TlGaSe2. Phys. Rev. B. 69: 245319. doi:10.1103/PhysRevB.69.245319
-
Delgado G E, Mora A J, Pérez F V and González J, 2007. Growth and crystal
structure of the layered compound TlGaSe2. Cryst. Res. Technol. 42: 663–666.
doi:10.1002/crat.200610885
-
Ves S, 1989. Effects of hydrostatic pressure on the fundamental absorption
edge of TlGaSe2. Phys. Rev. B. 40: 7892–7897. doi:10.1103/PhysRevB.40.7892
-
Senturk E, Tumbek L and Mikailov F A, 2005. Dielectric properties of thallium
gallium diselenide crystal in the incommensurate phase. Cryst. Res. Technol.
40: 901–904. doi:10.1002/crat.200410455
-
McMorrow D F, Cowley R A, Hatton P D and Banys J, 1990. The structure of
the paraelectric and incommensurate phases of TlGaSe2. J. Phys.: Condens.
Matter. 2: 3699. doi:10.1088/0953-8984/2/16/001
-
Ozdemir S and Bucurgat M, 2014. Photoelectrical properties of TlGaSe2 single
crystals. Solid State Sci. 33: 25–31. doi:10.1016/j.solidstatesciences.2014.04.006
-
Allakhverdiev K R, Aldzhonov M A, Mamedov T G and Salaev E Yu, 1986. Anomalous
behaviour of the Urbach edge and phase transitions in TlGaSe2. Sol. State
Commun. 58: 295–297. doi:10.1016/0038-1098(86)90087-6
-
Durnev Yu I, Kulbuzhev B S, Malsagov A U, Rabkin L M, Torgashev V I and
Yuzyk Yu I, 1989. Vibrational spectra and phase transitions in layered
semiconducting ferroelectrics with TlGaSe2 structure. I. Temperature dependences
of parameters of the Raman spectrum lines of TlGaSe2. Phys. stat. sol.
(b). 153: 517–527. doi:10.1002/pssb.2221530210
-
Duman S and Gürbulak B, 2005. Urbach tail and optical absorption in layered
semiconductor TlGaSe2(1–x)S2x single crystals. Physica Scripta. 72: 79–86.
doi:10.1238/Physica.Regular.072a00079
-
Gürbulak B, 1999. Growth and absorption properties of Dy-doped and undoped
p-type TlGaSe2. Appl. Phys. A. 68: 353–356. doi:10.1007/s003390050902
-
Grivickas V, Gavryushin V, Grivickas P, Galeckas A, Bikbajevas V and Gulbinas
K, 2011. Optical absorption related to Fe impurities in TlGaSe2. Phys.
stat. sol. (a). 208: 2186–2192. doi:10.1002/pssa.201026786
-
Guler I, Ambrico M, Ligonzo T and Gasanly N M, 2013. Temperature dependent
absorption edge and photoconductivity of Tl2In2Se3S layered single crystals.
J. Alloys Comp. 550: 471–474. doi:10.1016/j.jallcom.2012.10.133
-
Moss T S, Optical process in semiconductors. London: Butterworths. (1959).
-
Hanias M, Anagnostopoulos A, Kambas K and Spyridelis J, 1989. On the non-linear
properties of TlInX2 (X = S, Se, Te) ternary compounds. J. Phys. B. 160:
154–160. doi:10.1016/0921-4526(89)90050-1
-
Gurbulak B, 2001. The optical investigation of TlGa0.999Pr0.001Se2 and
TlGaSe2 single crystals. Physica B: Cond. Mater 293: 289–296. doi:10.1016/S0921-4526(00)00521-4
-
Kalomiros J A, Kalkan N, Hanias M, Anagnostopoulos A N and Kambas K, 1995.
Optical and photoelectric properties of TlGaSe2 layered crystals. Sol.
State Commun. 96: 601–607. doi:10.1016/0038-1098(95)00423-8
-
Guseinov G D, Aliyev V A and Bagirzade E F, 1985. Defects in TlGaSe2. Mater.
Chem. Phys. 13: 541–550. doi:10.1016/0254-0584(85)90004-5
-
Yang Z, Homewood K P, Finney M S, Harry M A and Reeson K J, 1995. Optical
absorption study of ion beam synthesized polycrystalline semiconducting
FeSi2. J. Appl. Phys. 78: 1958–1963. doi:10.1063/1.360167
-
Cody G D, Tiedje T, Abeles B, Brooks B and Goldstein Y, 1981. Disorder
and the opticalabsorption edge of hydrogenated amorphus silicon. Phys.
Rev. Lett. 47: 1480–1483. doi:10.1103/PhysRevLett.47.1480
-
Kurik M V, 1971. Urbach rule. Phys. stat. sol. (a). 8: 9–45. doi:10.1002/pssa.2210080102
-
Mahan G D, 1966. Phonon-broadened optical spectra: Urbach's rule. Phys.
Rev. 145: 602–608. doi:10.1103/PhysRev.145.602
-
Brada Y and Roth M, 1989. Optical absorption of KTa1−xNbxO3 single crystals.
Phys. Rev. B. 39: 10402–10405. doi:10.1103/PhysRevB.39.10402
-
Urbach F, 1953. The long-wavelength edge of photographic sensitivity and
of the electronic absorption of solids. Phys. Rev. 92: 1324. doi:10.1103/PhysRev.92.1324
-
Martienssen H W, 1957. Über die excitonenbanden deralkalihalogenidkristalle
J. Phys. Chem. Sol. 2: 257–267. doi:10.1016/0022-3697(57)90070-7
-
Sumi H and Toyozowa Y, 1971. Urbach-Martienseen rule and exciton trapped
momentarily by lattice vibrations. J. Phys. Soc. Japan. 31: 342–358.
doi:10.1143/JPSJ.31.342
-
Myronchuk G L, Davydyuk G E, Parasyuk O V, Khyzhun O Y, Andrievski R A,
Fedorchuk A O, Danylchuk S P, Piskach L V and Mozolyuk M Yu, 2013. Tl1–xIn1–xSnxSe2
(x = 0, 0.1, 0.2, 0.25) single-crystalline alloys as promising non-linear
optical materials. J. Mater. Sci: Mater. Electron. 24: 3555–3563. doi:10.1007/s10854-013-1285-0
-
Paucar R, Itsuwa H, Wakita K, Shim Y, Alekperov O and Mamedov N, 2015.
Phase transitions and Raman scattering spectra of TlGaSe2. J. Phys: Conf.
Ser. 619: 012018. doi:10.1088/1742-6596/619/1/012018
-
Pankove J I, 1971. Optical processes in semiconductors. New York: Dover.
-
Piasecki M, Myronchuk G L, Zamurueva O V, Khyzhun O Y, Parasyuk O V, Fedorchuk
A O, Albassam A, El-Naggar A M and Kityk I V, 2016. Huge operation by energy
gap of novel narrow band gap Tl1−x In1−x BxSe2 (B = Si, Ge): DFT, x-ray
emission and photoconductivity studies. Mater. Res. Exp. 3: 025902. doi:10.1088/2053-1591/3/2/025902
-
Zamurueva O V, Myronchuk G L, Lakshminarayana G, Parasyuk O V, Piskach
L V, Fedorchuk A O, AlZayed N S, El-Naggar A M and Kityk I V, 2014. Structural
and optical features of novel Tl1–xIn1–xGexSe2 chalcogenide crystals.
Opt. Mater. 37: 614–620. doi:10.1016/j.optmat.2014.08.004
-
Abdullaeva S G, Abdullaev N A, Belenkii G L, Mamedov N T and Suleimanov
R A, 1983. Temperature-induced shift of an exciton band and deformation
effects in layered TlGaS2 crystals. Fiz. Techn. Poluprov. 17: 1320–1321.
-
Varshni Y P, 1967. Temperature dependence of the energy gap in semiconductors.
Physica 34: 149–154. doi:10.1016/0031-8914(67)90062-6
(c) Ukrainian Journal
of Physical Optics |