Home
page
Other articles
in this issue |
Photoluminescence
in the solid solution In0.5Tl0.5I
1,2Kashuba
A.I., 3,4Zhydachevskyy
Ya.A., 4Semkiv
I.V., 1Franiv
A.V. and 2Kushnir
O.S.
1Physics Department, Ivan Franko National University
of Lviv, 8a Kyrylo and Mefodiy Street, 79005 Lviv, Ukraine
2Electronics and Computer Technologies Department,
Ivan Franko National University of Lviv, 107 Tarnavsky Street, 79005 Lviv,
Ukraine
3Institute of Physics, Polish Academy of Sciences,
Al. Lotników 32/46, 02-668 Warsaw, Poland
4 General Physics Department, Lviv Polytechnic
National University, 12 Bandera Street, 79646 Lviv, Ukraine
Download this
article
Abstract. Photoluminescence (PL) emission spectra are studied
for InxTl1-xI solid solution with x ≈ 0.5. Two
broad bands located approximately at 1.6 and 2.2 eV are found and their
physical mechanisms are discussed. The low-energy band has not been earlier
detected in the pure InI compound but resembles that observed in TlI. Time
decay of the PL in In0.5Tl0.5I is studied. Strong
temperature dependence of the PL intensity is revealed. Optical absorption
edge in In0.5Tl0.5I is found to be formed predominantly
by inter-cation transitions. PL excitation spectra are measured for the
light wavelengths 570 and 800 nm and their parameters are evaluated.
Keywords: photoluminescence, luminescence decay,
excitation spectra, excitons, InI–TlI solid solutions.
PACS: 78.55.-m
UDC: 535.37, 538.958
Ukr. J. Phys. Opt.
19 1-8
doi: 10.3116/16091833/19/1/1/2018
Received: 31.10.2017
Анотація. Експериментально досліджено
спектри випромінювання фотолюмінесценції
(ФЛ) для твердого розчину InxTl1-xI
при x ≈ 0,5. Виявлено дві широкі смуги ФЛ,
розташовані приблизно при 1,6 і 2,2 еВ, і обговорено
їхні фізичні механізми. Низькоенергетична
смуга, яку не було виявлено в чистому InI,
нагадує смугу, спостережену раніше в TlI.
Вивчено часове затухання ФЛ в In0.5Tl0.5I.
Виявлено значну температурну залежність
інтенсивності ФЛ. Показано, що край оптичного
поглинання In0.5Tl0.5I формується
переважно міжкатіонними переходами. Виміряно
спектри збудження ФЛ для довжин хвиль 570
і 800 нм і оцінено їхні параметри.
|
|
REFERENCES
-
Ohno N, Nakamura K and Nakai Y, 1987. Multiple LO phonon scattering in
orthorhombic thallous iodide. J. Phys. Soc. Japan. 56: 2565–2569. doi:10.1143/JPSJ.56.2565
-
Kolinko M I, Bovgyra O V and Piasecki M, 2001. Optical constants of indium
bromide. Low Temp. Phys. 27: 153–157. doi:10.1063/1.1353711
-
Fujii A, Takiyama K, Haraguchi T, Miyazaki K and Tabuki M, 2004. Time-resolved
photo-luminescence due to STE in TlBr doped with I− ions. J. Lumin. 108:
81–84. doi:10.1016/j.jlumin.2004.01.015
-
Ohno N, 2006. Time-resolved photoluminescence of exciton–polaritons in
orthorhombic TlI. J. Lumin. 119–120: 47–50. doi:10.1016/j.jlumin.2005.12.014
-
Xu Z P, Wang Y Z, Zhang W, Wang Q and Wu G Q, 2014. First-principle study
on the effects of Tl doping on the band gap and the band-edge of optical
absorption of InI. Acta Phys. Sin. 63: 147102.
-
Lowndes R P and Perry C H, 1973. Molecular structure and anharmonicity
in thallium iodide. J. Chem. Phys. 58: 271–278. doi:10.1063/1.1678917
-
Yoshida M, Ohno N, Watanabe H, Nakamura K and Nakai Y, 1984. Exciton transitions
in indium halides. J. Phys. Soc. Japan. 53: 408–418. doi:10.1143/JPSJ.53.408
-
Kashuba A I, Franiv A V, Bovgyra O V and Brezvin R S, 2017. Birefringence
of InxTl1–xI solid state solution. Funct. Mater. 23: 26–30. doi:10.15407/fm24.01.026
-
Kashuba A I and Apunevych S V, 2016. Phonon spectrum of crystals InxTl1–xI
substitutional solid solutions. J. Nano-Electron. Phys. 8: 1010-1–1010–5.
doi:10.21272/jnep.8(1).01010
-
Franiv A V, Stadnyk V Y, Kashuba A I, Brezvin R S, Bovgira O V and Futei
A V, 2017. Temperature behavior of thermal expansion and birefringence
of InxTl1–хІ substitution solid solutions. Opt. Spectrosc. 123: 177–180.
doi:10.1134/S0030400X17070074
-
Ohno N, Yoshida M, Nakamura K and Nakai Y, 1980. Photoluminescence of indium
iodide. Solid State Commun. 35: 775–779. doi:10.1016/0038-1098(80)91072-8
-
Franiv A, Peleshchyshyn R and Kolosivski Y, 2000. Optical properties of
quantum size nanocrystals InxTl1–xI embedded in solid matrices. Ukr.
J. Phys. Opt. 1: 24–27. doi:10.3116/16091833/1/1/24/2000
-
Perdew J P, Burke K and Ernzerhof M, 1996. Generalized gradient approximation
made simple. Phys. Rev. Lett. 77: 3865–3868.doi:10.1103/PhysRevLett.77.3865
-
Vanderbilt D, 1990. Soft self-consistent pseudopotentials in a generalized
eigenvalue formalism. Phys. Rev. B. 41: 7892–7895. doi:10.1103/PhysRevB.41.7892
-
Kolinko M I, 1997. Density of states of InI: theoretical and experimental
investigation. Phys. Rev. B. 55: 4007–4010. doi:10.1103/PhysRevB.55.4007
-
Benny Lee K C, Siegel J, Webb S E D, Lévêque-Fort S, Cole M J, Jones
R, Dowling K, Lever M J and French P M W, 2001. Application of the stretched
exponential function to fluorescence lifetime imaging. Biophys. J. 81:
1265–1274. doi:10.1016/S0006-3495(01)75784-0
-
Wojtowicz A J, Glodo J, Drozdowski W and Przegietka K R, 1998. Electron
traps and scintillation mechanism in YAlO3:Ce and LuAlO3:Ce scintillators.
J. Lumin. 79: 275–291. doi:10.1016/S0022-2313(98)00039-8
-
Kindrat I I, Padlyak B V and Drzewiecki A, 2017. Intrinsic luminescence
of un-doped borate glasses. J. Lumin. 187: 546−554. doi:10.1016/j.jlumin.2017.03.071
(c) Ukrainian Journal
of Physical Optics |