Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Photoluminescence in the solid solution In0.5Tl0.5I

1,2Kashuba A.I., 3,4Zhydachevskyy Ya.A., 4Semkiv I.V., 1Franiv A.V. and 2Kushnir O.S.

1Physics Department, Ivan Franko National University of Lviv, 8a Kyrylo and   Mefodiy Street, 79005 Lviv, Ukraine
2Electronics and Computer Technologies Department, Ivan Franko National University of Lviv, 107 Tarnavsky Street, 79005 Lviv, Ukraine
3Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
4 General Physics Department, Lviv Polytechnic National University, 12 Bandera Street, 79646 Lviv, Ukraine
 

Download this article

Abstract. Photoluminescence (PL) emission spectra are studied for InxTl1-xI solid solution with x ≈ 0.5. Two broad bands located approximately at 1.6 and 2.2 eV are found and their physical mechanisms are discussed. The low-energy band has not been earlier detected in the pure InI compound but resembles that observed in TlI. Time decay of the PL in In0.5Tl0.5I is studied. Strong temperature dependence of the PL intensity is revealed. Optical absorption edge in In0.5Tl0.5I is found to be formed predominantly by inter-cation transitions. PL excitation spectra are measured for the light wavelengths 570 and 800 nm and their parameters are evaluated.

Keywords: photoluminescence, luminescence decay, excitation spectra, excitons, InI–TlI solid solutions.

PACS: 78.55.-m 
UDC: 535.37, 538.958
Ukr. J. Phys. Opt. 19 1-8
doi: 10.3116/16091833/19/1/1/2018
Received: 31.10.2017

Анотація. Експериментально досліджено спектри випромінювання фотолюмінесценції (ФЛ) для твердого розчину InxTl1-xI при x ≈ 0,5. Виявлено дві широкі смуги ФЛ, розташовані приблизно при 1,6 і 2,2 еВ, і обговорено їхні фізичні механізми. Низькоенергетична смуга, яку не було виявлено в чистому InI, нагадує смугу, спостережену раніше в TlI. Вивчено часове затухання ФЛ в In0.5Tl0.5I. Виявлено значну температурну залежність інтенсивності ФЛ. Показано, що край оптичного поглинання In0.5Tl0.5I формується переважно міжкатіонними переходами. Виміряно спектри збудження ФЛ для довжин хвиль 570 і 800 нм і оцінено їхні параметри.
 

REFERENCES
  1. Ohno N, Nakamura K and Nakai Y, 1987. Multiple LO phonon scattering in orthorhombic thallous iodide. J. Phys. Soc. Japan. 56: 2565–2569. doi:10.1143/JPSJ.56.2565
  2. Kolinko M I, Bovgyra O V and Piasecki M, 2001. Optical constants of indium bromide. Low Temp. Phys. 27: 153–157. doi:10.1063/1.1353711
  3. Fujii A, Takiyama K, Haraguchi T, Miyazaki K and Tabuki M, 2004. Time-resolved photo-luminescence due to STE in TlBr doped with I− ions. J. Lumin. 108: 81–84. doi:10.1016/j.jlumin.2004.01.015
  4. Ohno N, 2006. Time-resolved photoluminescence of exciton–polaritons in orthorhombic TlI. J. Lumin. 119–120: 47–50. doi:10.1016/j.jlumin.2005.12.014
  5. Xu Z P, Wang Y Z, Zhang W, Wang Q and Wu G Q, 2014. First-principle study on the effects of Tl doping on the band gap and the band-edge of optical absorption of InI. Acta Phys. Sin. 63: 147102. 
  6. Lowndes R P and Perry C H, 1973. Molecular structure and anharmonicity in thallium iodide. J. Chem. Phys. 58: 271–278. doi:10.1063/1.1678917
  7. Yoshida M, Ohno N, Watanabe H, Nakamura K and Nakai Y, 1984. Exciton transitions in indium halides. J. Phys. Soc. Japan. 53: 408–418. doi:10.1143/JPSJ.53.408
  8. Kashuba A I, Franiv A V, Bovgyra O V and Brezvin R S, 2017. Birefringence of InxTl1–xI solid state solution. Funct. Mater. 23: 26–30. doi:10.15407/fm24.01.026
  9. Kashuba A I and Apunevych S V, 2016. Phonon spectrum of crystals InxTl1–xI substitutional solid solutions. J. Nano-Electron. Phys. 8: 1010-1–1010–5. doi:10.21272/jnep.8(1).01010 
  10. Franiv A V, Stadnyk V Y, Kashuba A I, Brezvin R S, Bovgira O V and Futei A V, 2017. Temperature behavior of thermal expansion and birefringence of InxTl1–хІ substitution solid solutions. Opt. Spectrosc. 123: 177–180. doi:10.1134/S0030400X17070074
  11. Ohno N, Yoshida M, Nakamura K and Nakai Y, 1980. Photoluminescence of indium iodide. Solid State Commun. 35: 775–779. doi:10.1016/0038-1098(80)91072-8
  12. Franiv A, Peleshchyshyn R and Kolosivski Y, 2000. Optical properties of quantum size nanocrystals InxTl1–xI embedded in solid matrices. Ukr. J. Phys. Opt. 1: 24–27. doi:10.3116/16091833/1/1/24/2000
  13. Perdew J P, Burke K and Ernzerhof M, 1996. Generalized gradient approximation made simple. Phys. Rev. Lett. 77: 3865–3868.doi:10.1103/PhysRevLett.77.3865
  14. Vanderbilt D, 1990. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B. 41: 7892–7895. doi:10.1103/PhysRevB.41.7892
  15. Kolinko M I, 1997. Density of states of InI: theoretical and experimental investigation. Phys. Rev. B. 55: 4007–4010. doi:10.1103/PhysRevB.55.4007
  16. Benny Lee K C, Siegel J, Webb S E D, Lévêque-Fort S, Cole M J, Jones R, Dowling K, Lever M J and French P M W, 2001. Application of the stretched exponential function to fluorescence lifetime imaging. Biophys. J. 81: 1265–1274. doi:10.1016/S0006-3495(01)75784-0
  17. Wojtowicz A J, Glodo J, Drozdowski W and Przegietka K R, 1998. Electron traps and scintillation mechanism in YAlO3:Ce and LuAlO3:Ce scintillators. J. Lumin. 79: 275–291. doi:10.1016/S0022-2313(98)00039-8
  18. Kindrat I I, Padlyak B V and Drzewiecki A, 2017. Intrinsic luminescence of un-doped borate glasses. J. Lumin. 187: 546−554. doi:10.1016/j.jlumin.2017.03.071
(c) Ukrainian Journal of Physical Optics