Home
page
Other articles
in this issue |
Studies of concentration
dependence of the fluorescent quantum yield from rhodamine 6G and Au–Pd
core–shell nanorods, using a response surface methodology
Ekkachai Rammarat, Kitsakorn Locharoenrat, Witoon Yindeesuk and Pattareeya
Damrongsak
Department of Physics, Faculty of Science, King Mongkut’s
Institute of Technology Ladkrabang, No. 1 Chalongkrung Road, Ladkrabang
District, Bangkok 10520, Thailand
Download this
article
Abstract. We have applied a response surface approach to study
the fluorescence quantum yield (FQY) of rhodamine 6G (Rh6G) mixed with
Au–Pd core–shell nanorods (Au–Pd NRs). The FQYs have been measured
for the Rh6G concentrations varying from 3.53×10–7 to 1.70×10–6
mol/L and the concentrations of Au–Pd NRs from 7.06×10–6
to 1.36×10–4 mol/L. Our experimental results testify that
the FQY depends notably on the proportions of Rh6G and Au–Pd NRs. A specific
relationship between the FQY and the concentrations has also been confirmed
by a response surface plot. It is found that the discrepancy between the
experiment and the calculations is less than 2%.
Keywords: fluorescence, response surface methodology,
nanorods
PACS: 33.50.Dq, 06.20.Dk, 78.67.Qa.
UDC: 535.37
Ukr. J. Phys. Opt.
18 179-186
doi: 10.3116/16091833/18/3/179/2017
Received: 13.07.2017
Анотація. У цій праці застосовано
підхід поверхні відгуку до вивчення квантового
виходу флуоресценції (КВЛ) родаміну 6G (Р6G),
змішаного з нанопаличками Au–Pd типу серцевина-оболонка
(Au–Pd НП). КВЛ було виміряно для концентрацій
Р6G у діапазоні від 3,53×10–7 до 1,70×10–6
моль/л і концентрацій Au–Pd НП від 7,06×10–6
до 1,36×10–4 моль/л. Експериментальні
результати засвідчили, що КВЛ істотно залежить
від пропорцій Р6G і Au–Pd НП. Конкретний взаємозв’язок
між КВЛ і концентраціями також підтверджено
графіком поверхні відгуку. Виявлено, що
розбіжність між експериментом та розрахунком
складає менше 2%.
|
|
REFERENCES
-
Menendez-Miranda M, Costa-Fernandez J M, Encinar J R, Parak W J and Carrillo-Carrion
C, 2016. Determination of the ratio of fluorophore/nanoparticle for fluorescence-labeled
nanoparticles. Analyst. 141: 1266–1272. doi:10.1039/C5AN02405F
-
Mingcong Rong, Zhixiong Cai, Lei Xie, Chunshui Lin, Xinhong Song, Feng
Luo, Yiru Wang and Xi Chen, 2016. Study on the ultrahigh quantum yield
of fluorescent P,O-g-C3N4 nanodots and its application in cell imaging.
Chem. - A Europ. Journ. 22: 9387–9395. doi:10.1002/chem.201601065
-
El-Bashir S M, Barakat F M and AlSalhi M S, 2013. Metal-enhanced fluorescence
of mixed coumarin dyes by silver and gold nanoparticles: towards plasmonic
thin-film luminescent solar concentrator. J. Lumin. 143: 43–49. doi:10.1016/j.jlumin.2013.04.029
-
Lee J, Lee S, Jen M and Pang Y, 2015. Metal-enhanced fluorescence: wavelength-dependent
ultrafast energy transfer. J. Phys. Chem. C. 119: 23285−23291. doi:10.1021/acs.jpcc.5b08744
-
Acuna G P, Bucher M, Stein I H, Steinhauer C, Kuzyk A, Holzmeister P, Schreiber
R, Moroz A, Stefani F D, Liedl T, Simmel F C and Tinnefeld P, 2012. Distance
dependence of single-fluorophore quenching by gold nanoparticles studied
on DNA origami. ACS Nano. 6: 3189–3195. doi:10.1021/nn2050483
-
Suslov A, Lama P T and Dorsinville R, 2015. Fluorescence enhancement of
rhodamine B by monodispersed silver nanoparticles. Opt. Commun. 345: 116–119.
doi:10.1016/j.optcom.2015.01.069
-
Chen Y-C, Gao C-Y, Chen K-L, Meen T-H and Huang C-J, 2013. Enhancement
and quenching of fluorescence by silver nanoparticles in organic light-emitting
diodes. J. Nanomater. 2013: 84136. doi:10.1155/2013/841436
-
Boonpiphobanun N, Damrongsak P and Locharoenrat K, 2016. Comparison of
fluorescence behaviors of rhodamine 6G with palladium-coated gold nanorods
in formations of solutions and thin films. Appl. Mech. Mater. 851: 14–18.
doi:10.4028/www.scientific.net/AMM.851.14
-
Nagaraja D, Melavanki R M, Patil N R and Kusanur R A, 2014. Solvent effect
on the relative quantum yield and fluorescence quenching of 2DAM. Spectrochem.
Acta. A. 130: 122–128. doi:10.1016/j.saa.2014.03.063
-
Wurtha C, Gonzalez M G, Niessner R, Panne U, Haisch C and Genger U R, 2012.
Determination of the absolute fluorescence quantum yield of rhodamine6G
with optical and photoacoustic methods – providing the basis for fluorescence
quantum yield standards. Talanta. 90: 30–37. doi:10.1016/j.talanta.2011.12.051
-
Omolola A O, Jideani A I O, Kapila P F and Jideani V I, 2015. Optimization
of microwave drying conditions of two banana varieties using response surface
methodology. Food Sci. Technol. 35: 438–444. doi:10.1590/1678-457X.6700
-
Khumtong T, Sakulkalavek A, Sakdanuphab R, 2017. Empirical modeling and
optimization of pre-heat temperature and Ar flow rate using response surface
methodology for stoichiometric Sb2Te3 thin films prepared by RF magnetron
sputtering. J. Alloy. Compd. 715: 65–72. doi:10.1016/j.jallcom.2017.04.322
-
Babaki M, Yousefi M, Habibi Z and Mohammadi M, 2017. Process optimization
for biodiesel production from waste cooking oil using multi-enzyme systems
through response surface methodology. Renew. Energ. 105: 465–472. doi:10.1016/j.renene.2016.12.086
-
Chaisongkroh N, Chungsiriporn J and Bunyakan C, 2012. Modeling and optimization
of ammonia treatment by acidic biochar using response surface methodology.
Songklanakarin J. Sci. Technol. 34: 423–432.
-
Zang X-F, Zhang Y and Liu L, 2014. Fluorescence life times and quantum
yields of ten rhodamine derivatives: Structural effect on emission mechanism
in different solvents. J. Lumin. 145: 448–453. doi:10.1016/j.jlumin.2013.07.066
-
Noshadi I, Amin N A S and Richard S P, 2012. Continuous production of biodiesel
from waste cooking oil in a reactive distillation column catalyzed by solid
heteropolyacid: Optimization using response surface methodology (RSM).
Fuel. 94: 156–164. doi:10.1016/j.fuel.2011.10.018
-
Mandala D K, Bhunia H, Bajpai P K, Kushwaha J P, Chaudhari C V, Dubey K
A and Varshney L, 2017. Optimization of acrylic acid grafting onto polypropylene
using response surface methodology and its biodegradability. Radiat. Phys.
Chem. 132: 71–81. doi:10.1016/j.radphyschem.2016.12.003
-
Danmaliki G I, Saleh T A and Shamsuddeen A A, 2017. Response surface methodology
optimization of adsorptive desulfurization on nickel/activated carbon.
Chem. Eng. J. 313: 993–1003. doi:10.1016/j.cej.2016.10.141
(c) Ukrainian Journal
of Physical Optics |