Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Studies of concentration dependence of the fluorescent quantum yield from rhodamine 6G and Au–Pd core–shell nanorods, using a response surface methodology

Ekkachai Rammarat, Kitsakorn Locharoenrat, Witoon Yindeesuk and Pattareeya Damrongsak

Department of Physics, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, No. 1 Chalongkrung Road, Ladkrabang District, Bangkok 10520, Thailand
 

Download this article

Abstract. We have applied a response surface approach to study the fluorescence quantum yield (FQY) of rhodamine 6G (Rh6G) mixed with Au–Pd core–shell nanorods (Au–Pd NRs). The FQYs have been measured for the Rh6G concentrations varying from 3.53×10–7 to 1.70×10–6 mol/L and the concentrations of Au–Pd NRs from 7.06×10–6 to 1.36×10–4 mol/L. Our experimental results testify that the FQY depends notably on the proportions of Rh6G and Au–Pd NRs. A specific relationship between the FQY and the concentrations has also been confirmed by a response surface plot. It is found that the discrepancy between the experiment and the calculations is less than 2%.

Keywords: fluorescence, response surface methodology, nanorods

PACS: 33.50.Dq, 06.20.Dk, 78.67.Qa.
UDC: 535.37
Ukr. J. Phys. Opt. 18 179-186
doi: 10.3116/16091833/18/3/179/2017
Received: 13.07.2017

Анотація.  У цій праці застосовано підхід поверхні відгуку до вивчення квантового виходу флуоресценції (КВЛ) родаміну 6G (Р6G), змішаного з нанопаличками Au–Pd типу серцевина-оболонка (Au–Pd НП). КВЛ було виміряно для концентрацій Р6G у діапазоні від 3,53×10–7 до 1,70×10–6 моль/л і концентрацій Au–Pd НП від 7,06×10–6 до 1,36×10–4 моль/л. Експериментальні результати засвідчили, що КВЛ істотно залежить від пропорцій Р6G і Au–Pd НП. Конкретний взаємозв’язок між КВЛ і концентраціями також підтверджено графіком поверхні відгуку. Виявлено, що розбіжність між експериментом та розрахунком складає менше 2%.
 

REFERENCES
  1. Menendez-Miranda M, Costa-Fernandez J M, Encinar J R, Parak W J and Carrillo-Carrion C, 2016. Determination of the ratio of fluorophore/nanoparticle for fluorescence-labeled nanoparticles. Analyst. 141: 1266–1272. doi:10.1039/C5AN02405F
  2. Mingcong Rong, Zhixiong Cai, Lei Xie, Chunshui Lin, Xinhong Song, Feng Luo, Yiru Wang and Xi Chen, 2016. Study on the ultrahigh quantum yield of fluorescent P,O-g-C3N4 nanodots and its application in cell imaging. Chem. - A Europ. Journ. 22: 9387–9395. doi:10.1002/chem.201601065
  3. El-Bashir S M, Barakat F M and AlSalhi M S, 2013. Metal-enhanced fluorescence of mixed coumarin dyes by silver and gold nanoparticles: towards plasmonic thin-film luminescent solar concentrator. J. Lumin. 143: 43–49. doi:10.1016/j.jlumin.2013.04.029
  4. Lee J, Lee S, Jen M and Pang Y, 2015. Metal-enhanced fluorescence: wavelength-dependent ultrafast energy transfer. J. Phys. Chem. C. 119: 23285−23291. doi:10.1021/acs.jpcc.5b08744
  5. Acuna G P, Bucher M, Stein I H, Steinhauer C, Kuzyk A, Holzmeister P, Schreiber R, Moroz A, Stefani F D, Liedl T, Simmel F C and Tinnefeld P, 2012. Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami. ACS Nano. 6: 3189–3195. doi:10.1021/nn2050483
  6. Suslov A, Lama P T and Dorsinville R, 2015. Fluorescence enhancement of rhodamine B by monodispersed silver nanoparticles. Opt. Commun. 345: 116–119. doi:10.1016/j.optcom.2015.01.069
  7. Chen Y-C, Gao C-Y, Chen K-L, Meen T-H and Huang C-J, 2013. Enhancement and quenching of fluorescence by silver nanoparticles in organic light-emitting diodes. J. Nanomater. 2013: 84136. doi:10.1155/2013/841436
  8. Boonpiphobanun N, Damrongsak P and Locharoenrat K, 2016. Comparison of fluorescence behaviors of rhodamine 6G with palladium-coated gold nanorods in formations of solutions and thin films. Appl. Mech. Mater. 851: 14–18. doi:10.4028/www.scientific.net/AMM.851.14
  9. Nagaraja D, Melavanki R M, Patil N R and Kusanur R A, 2014. Solvent effect on the relative quantum yield and fluorescence quenching of 2DAM. Spectrochem. Acta. A. 130: 122–128. doi:10.1016/j.saa.2014.03.063
  10. Wurtha C, Gonzalez M G, Niessner R, Panne U, Haisch C and Genger U R, 2012. Determination of the absolute fluorescence quantum yield of rhodamine6G with optical and photoacoustic methods – providing the basis for fluorescence quantum yield standards. Talanta. 90: 30–37. doi:10.1016/j.talanta.2011.12.051
  11. Omolola A O, Jideani A I O, Kapila P F and Jideani V I, 2015. Optimization of microwave drying conditions of two banana varieties using response surface methodology. Food Sci. Technol. 35: 438–444. doi:10.1590/1678-457X.6700
  12. Khumtong T, Sakulkalavek A, Sakdanuphab R, 2017. Empirical modeling and optimization of pre-heat temperature and Ar flow rate using response surface methodology for stoichiometric Sb2Te3 thin films prepared by RF magnetron sputtering. J. Alloy. Compd. 715: 65–72. doi:10.1016/j.jallcom.2017.04.322
  13. Babaki M, Yousefi M, Habibi Z and Mohammadi M, 2017. Process optimization for biodiesel production from waste cooking oil using multi-enzyme systems through response surface methodology. Renew. Energ. 105: 465–472. doi:10.1016/j.renene.2016.12.086
  14. Chaisongkroh N, Chungsiriporn J and Bunyakan C, 2012. Modeling and optimization of ammonia treatment by acidic biochar using response surface methodology. Songklanakarin J. Sci. Technol. 34: 423–432.
  15. Zang X-F, Zhang Y and Liu L, 2014. Fluorescence life times and quantum yields of ten rhodamine derivatives: Structural effect on emission mechanism in different solvents. J. Lumin. 145: 448–453. doi:10.1016/j.jlumin.2013.07.066
  16. Noshadi I, Amin N A S and Richard S P, 2012. Continuous production of biodiesel from waste cooking oil in a reactive distillation column catalyzed by solid heteropolyacid: Optimization using response surface methodology (RSM). Fuel. 94: 156–164. doi:10.1016/j.fuel.2011.10.018
  17. Mandala D K, Bhunia H, Bajpai P K, Kushwaha J P, Chaudhari C V, Dubey K A and Varshney L, 2017. Optimization of acrylic acid grafting onto polypropylene using response surface methodology and its biodegradability. Radiat. Phys. Chem. 132: 71–81. doi:10.1016/j.radphyschem.2016.12.003
  18. Danmaliki G I, Saleh T A and Shamsuddeen A A, 2017. Response surface methodology optimization of adsorptive desulfurization on nickel/activated carbon. Chem. Eng. J. 313: 993–1003. doi:10.1016/j.cej.2016.10.141
(c) Ukrainian Journal of Physical Optics