Home
page
Other articles
in this issue |
Topological defects
of optical indicatrix orientation in optically biaxial crystals. The case
of light propagation in the directions close to the optic axes
Krupych O., Vasylkiv Yu., Kryvyy T., Skab I. and Vlokh R.
Vlokh Institute of Physical Optics, 23 Dragomanov Street,
79005 Lviv, Ukraine
Download this
article
Abstract. We have developed analytical approach to determine
the orientations of cross sections of optical indicatrix (OI) around the
optic axes (OAs) in biaxial crystals. It has been found that the angular
distribution of cross sections of the OI by the planes perpendicular to
the directions close to the OA reveals a topological defect of OI orientations
with the strength equal to ½. When a conical circularly polarized wave
with cone’s axis coinciding with the OA in a biaxial crystal propagates
through a sample, a singly charged optical vortex is generated. We have
shown that splitting of a single OA in optically uniaxial crystals into
two OAs due to electrooptic effect is accompanied by the topological reaction
that involves dividing a single defect with the unit strength into two
defects with the strengths equal to ½. We have experimentally discovered
topological dipoles that consist of topological defects with the strengths
of each defect within the pair equal to +½ and –½.
Keywords: topological defects, optical indicatrix
of biaxial crystals, optical vortices, topological reactions
PACS: 42.55.Zz
UDC: 538.958+681.7.069.24
Ukr. J. Phys. Opt.
18 131-138
doi: 10.3116/16091833/18/3/131/2017
Received: 09.06.2017
Анотація. У роботі представлено
аналітичний підхід до опису орієнтації
перетинів оптичних індикатрис за умови
просвічуванні оптично двовісного кристала
в довільному напрямку. Виявлено, що кутовий
розподіл перетинів оптичних індикатрис
площинами, перпендикулярними до напрямків,
близьких до оптичної осі двовісного кристала,
містить топологічний дефект орієнтації
оптичних індикатрис із силою ½. При поширенні
конічної циркулярно поляризованої хвилі
вздовж оптичних осей у двовісних кристалах
буде генеруватися вихор одиничного заряду.
Показано, що розщеплення єдиної оптичної
осі в одновісному кристалі внаслідок електрооптичного
ефекту і відповідна поява двох оптичних
осей супроводжується топологічною реакцією
розпаду дефекту з силою 1 на два дефекти
з силою ½. Експериментально виявлено топологічні
диполі, які складаються з пари топологічних
дефектів із силами +½ і –½.
|
|
REFERENCES
-
Nielsen M A and Chuang I L. Quantum computation and quantum information.
Cambridge University Press (2000).
-
Gahaganand K T and Swartzlander G A, 1996. Optical vortex trapping of particles.
Opt. Lett. 21: 827–829. doi:10.1364/OL.21.000827
-
Brunet T, Jean-Louis Thomas and Marchiano R, 2010. Transverse shift of
helical beams and sub-diffraction imaging. Phys. Rev. Lett. 105: 034301.
doi:10.1103/PhysRevLett.105.034301
-
Soskin M S and Vasnetsov M V, 2001. Progr. Opt. 42: 219–276. doi:10.1016/S0079-6638(01)80018-4
-
DiVincenzo D P, 1995. Quantum computation. Science. 270: 255–261. doi:10.1126/science.270.5234.255
-
Kilin S Ya, 1999. Quantum information. Sov. Phys. Uspekhi. 42: 435–452.
doi:10.1070/PU1999v042n05ABEH000542
-
Boschi D, Branca S, De Martini F, Hardy L and Popescu S, 1998. Experimental
realization of teleporting an unknown pure quantum state via dual classical
and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80: 1121–1125.
doi:10.1103/PhysRevLett.80.1121
-
Beth R A, 1936. Mechanical detection and measurement of the angular momentum
of light. Phys. Rev. 50: 115–125. doi:10.1103/PhysRev.50.115
-
Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P, 1992. Orbital
angular momentum of light and the transformation of Laguerre–Gaussian
laser modes. Phys. Rev. A. 45: 8186–8189. doi:10.1103/PhysRevA.45.8185
-
Molina-Terriza G, Torres J P and Torner L, 2001. Management of the angular
momentum of light: preparation of photons in multidimensional vector states
of angular momentum. Phys. Rev. Lett. 88: 013601. doi:10.1103/PhysRevLett.88.013601
-
Heckenberg N R, McDuff R, Smith C P and White A G, 1992. Generation of
optical phase singularities by computer-generated holograms. Opt. Lett.
17: 221–223. doi:10.1364/OL.17.000221
-
Abramochkin E and Volostnikov V, 1991. Beam transformations and non transformed
beams. Opt. Commun. 83: 123–135. doi:10.1016/0030-4018(91)90534-K
-
Volyar A V, 2002. Fiber singular optics. Ukr. J. Phys. Opt. 3: 69–96.
doi:10.3116/16091833/3/2/69/2002
-
Skab I, VasylkivYu, Savaryn V and Vlokh R, 2011. Optical anisotropy induced
by torsion stresses in LiNbO3 crystals: appearance of an optical vortex.
J. Opt. Soc. Amer. A. 28: 633–640. doi:10.1364/JOSAA.28.000633
-
Skab I, Vasylkiv Yu, Zapeka B, Savaryn V and Vlokh R, 2011. Appearance
of singularities of optical fields under torsion of crystals containing
three fold symmetry axes. J. Opt. Soc. Amer. A. 28: 1331–1340. doi:10.1364/JOSAA.28.001331
-
Skab I, Vasylkiv Yu and Vlokh R, 2012. Induction of optical vortex in the
crystals subjected to bending stresses. Appl. Opt. 51: 5797–5805. doi:10.1364/AO.51.005797
-
Skab I, Vasylkiv Yu, Smaga I and Vlokh R, 2011. Spin-to-orbital momentum
conversion via electro-optic Pockels effect in crystals. Phys. Rev. A.
84: 043815. doi:10.1103/PhysRevA.84.043815
-
Vasylkiv Yu, Skab I and Vlokh R, 2014. Generation of double-charged optical
vortices on the basis of electro-optic Kerr effect. Appl. Opt. 53: B60–B73.
doi:10.1364/AO.53.000B60
-
Savaryn V, Vasylkiv Yu, Krupych O, Skab I and Vlokh R, 2013. Polarization
singularities of optical fields caused by structural dislocations in crystals.
J. Opt. 15: 044023. doi:10.1088/2040-8978/15/4/044023
-
Desyatnikov A, Fadeyeva T A, Shvedov V G, Izdebskaya Y V, Volyar A V, Brasselet
E, Neshev D N, Krolikowski W and Kivshar Y S, 2010. Spatially engineered
polarization states and optical vortices in uniaxial crystals. Opt. Express.
18: 10848–10863. doi:10.1364/OE.18.010848
-
Cincotti G, Ciatoni A and Palma C, 2002. Laguerre–Gaussian and Bessel–Gaussian
beams in uniaxial crystals. J. Opt. Soc. Amer. A. 19: 1680–1688. doi:10.1364/JOSAA.19.001680
-
Volyar A and Fadeyeva T, 2006. Laguerre-Gaussian beams with complex and
real arguments in uniaxial crystals. Opt. Spectrosc. 101: 297–304. doi:10.1134/S0030400X06090190
-
Ciattoni A, Cincotti G and Palma C, 2003. Circular polarized beams and
vortex generation in uniaxial media. J. Opt. Soc. Amer. A. 20: 163–171.
doi:10.1364/JOSAA.20.000163
-
Fadeyeva T A, Rubass A F and Volyar A V, 2009. Transverse shift of a high-order
paraxial vortex-beam induced by a homogeneous anisotropic medium. Phys.
Rev. A. 79: 053815. doi:10.1103/PhysRevA.79.053815
-
Flossman F, Schwarz U T, Maier M, and Dennis M R, 2005. Polarization singularities
from unfolding an optical vortex through a birefringent crystal. Phys.
Rev. Lett. 95: 253901–4. doi:10.1103/PhysRevLett.95.253901
-
Berry M V and Jeffrey M R, 2007. Chapter 2. Conical diffraction: Hamilton's
diabolical point at the heart of crystal optics. Progr. Opt. 50: 13–50.
doi:10.1016/S0079-6638(07)50002-8
-
Berry M V, Jeffrey M R and Mansuripur M, 2005. Orbital and spin angular
momentum in conical diffraction. J. Opt. A: Pure Appl. Opt. 7: 685–690.
doi:10.1088/1464-4258/7/11/011
-
Vlokh R, Volyar A, Mys O and Krupych O, 2003. Appearance of optical vortex
at conical refraction. examples of NaNO2 and YFeO3 crystals. Ukr.J.Phys.Opt.
4: 90–93. doi:10.3116/16091833/4/2/90/2003
-
Egorov Yu, Fadeyeva T and Volyar A, 2004. The fine structure of singular
beams in crystals: colours and polarization. J. Opt. A: Pure Appl. Opt.
6: S217–S228. doi:10.1088/1464-4258/6/5/014
-
Marrucci L, 2008. Generation of helical modes of light by spin-to-orbital
angular momentum conversion in inhomogeneous liquid crystals. Mol. Cryst.
Liq. Cryst. 488: 148–162. doi:10.1080/15421400802240524
-
Lu X, Wu Z, Zhang W and Chen L, 2014. Polarization singularities and orbital
angular momentum sidebands from rotational symmetry broken by the Pockels
effect. Sci. Rep. 4: 4865. doi:10.1038/srep04865
-
32. Lu X and Chen L, 2012. Spin-orbit interactions of a Gaussian light
propagating in biaxial crystals. Opt. Express. 20: 11766. doi:10.1364/OE.20.011753
-
33. Lu X and Chen L, 2013. Anisotropic dynamics of optical vortex-beam
propagating in biaxial crystals: a numerical method based on asymptotic
expansion. Opt. Express. 21: 8493. doi:10.1364/OE.21.008493
-
34. Weber M J. Handbook of optical materials. Boca Raton, London, New York,
Washington: CRC Press LLC (2003).
-
35. Volyar A, Shvedov V, Fadeyeva T, Desyatnikov A S, Neshev D N, Krolikowski
W and Kivshar Y S, 2006. Generation of single-charge optical vortices with
an uniaxial crystal. Opt. Express. 14: 3724–3729. doi:10.1364/OE.14.003724
(c) Ukrainian Journal
of Physical Optics |