Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Topological defects of optical indicatrix orientation in optically biaxial crystals. The case of light propagation in the directions close to the optic axes

Krupych O., Vasylkiv Yu., Kryvyy T., Skab I. and Vlokh R.
 

Vlokh Institute of Physical Optics, 23 Dragomanov Street, 79005 Lviv, Ukraine

Download this article

Abstract. We have developed analytical approach to determine the orientations of cross sections of optical indicatrix (OI) around the optic axes (OAs) in biaxial crystals. It has been found that the angular distribution of cross sections of the OI by the planes perpendicular to the directions close to the OA reveals a topological defect of OI orientations with the strength equal to ½. When a conical circularly polarized wave with cone’s axis coinciding with the OA in a biaxial crystal propagates through a sample, a singly charged optical vortex is generated. We have shown that splitting of a single OA in optically uniaxial crystals into two OAs due to electrooptic effect is accompanied by the topological reaction that involves dividing a single defect with the unit strength into two defects with the strengths equal to ½. We have experimentally discovered topological dipoles that consist of topological defects with the strengths of each defect within the pair equal to +½ and –½.

Keywords: topological defects, optical indicatrix of biaxial crystals, optical vortices, topological reactions

PACS: 42.55.Zz 
UDC: 538.958+681.7.069.24
Ukr. J. Phys. Opt. 18 131-138
doi: 10.3116/16091833/18/3/131/2017
Received: 09.06.2017

Анотація. У роботі представлено аналітичний підхід до опису орієнтації перетинів оптичних індикатрис за умови просвічуванні оптично двовісного кристала в довільному напрямку. Виявлено, що кутовий розподіл перетинів оптичних індикатрис площинами, перпендикулярними до напрямків, близьких до оптичної осі двовісного кристала, містить топологічний дефект орієнтації оптичних індикатрис із силою ½. При поширенні конічної циркулярно поляризованої хвилі вздовж оптичних осей у двовісних кристалах буде генеруватися вихор одиничного заряду. Показано, що розщеплення єдиної оптичної осі в одновісному кристалі внаслідок електрооптичного ефекту і відповідна поява двох оптичних осей супроводжується топологічною реакцією розпаду дефекту з силою 1 на два дефекти з силою ½. Експериментально виявлено топологічні диполі, які складаються з пари топологічних дефектів із силами +½ і –½.
 

REFERENCES
  1. Nielsen M A and Chuang I L. Quantum computation and quantum information. Cambridge University Press (2000).
  2. Gahaganand K T and Swartzlander G A, 1996. Optical vortex trapping of particles. Opt. Lett. 21: 827–829. doi:10.1364/OL.21.000827
  3. Brunet T, Jean-Louis Thomas and Marchiano R, 2010. Transverse shift of helical beams and sub-diffraction imaging. Phys. Rev. Lett. 105: 034301. doi:10.1103/PhysRevLett.105.034301
  4. Soskin M S and Vasnetsov M V, 2001. Progr. Opt. 42: 219–276. doi:10.1016/S0079-6638(01)80018-4
  5. DiVincenzo D P, 1995. Quantum computation. Science. 270: 255–261. doi:10.1126/science.270.5234.255
  6. Kilin S Ya, 1999. Quantum information. Sov. Phys. Uspekhi. 42: 435–452. doi:10.1070/PU1999v042n05ABEH000542
  7. Boschi D, Branca S, De Martini F, Hardy L and Popescu S, 1998. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80: 1121–1125. doi:10.1103/PhysRevLett.80.1121
  8. Beth R A, 1936. Mechanical detection and measurement of the angular momentum of light. Phys. Rev. 50: 115–125. doi:10.1103/PhysRev.50.115
  9. Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P, 1992. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A. 45: 8186–8189. doi:10.1103/PhysRevA.45.8185
  10. Molina-Terriza G, Torres J P and Torner L, 2001. Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum. Phys. Rev. Lett. 88: 013601. doi:10.1103/PhysRevLett.88.013601
  11. Heckenberg N R, McDuff R, Smith C P and White A G, 1992. Generation of optical phase singularities by computer-generated holograms. Opt. Lett. 17: 221–223. doi:10.1364/OL.17.000221
  12. Abramochkin E and Volostnikov V, 1991. Beam transformations and non transformed beams. Opt. Commun. 83: 123–135. doi:10.1016/0030-4018(91)90534-K
  13. Volyar A V, 2002. Fiber singular optics. Ukr. J. Phys. Opt. 3: 69–96. doi:10.3116/16091833/3/2/69/2002
  14. Skab I, VasylkivYu, Savaryn V and Vlokh R, 2011. Optical anisotropy induced by torsion stresses in LiNbO3 crystals: appearance of an optical vortex. J. Opt. Soc. Amer. A. 28: 633–640. doi:10.1364/JOSAA.28.000633
  15. Skab I, Vasylkiv Yu, Zapeka B, Savaryn V and Vlokh R, 2011. Appearance of singularities of optical fields under torsion of crystals containing three fold symmetry axes. J. Opt. Soc. Amer. A. 28: 1331–1340. doi:10.1364/JOSAA.28.001331
  16. Skab I, Vasylkiv Yu and Vlokh R, 2012. Induction of optical vortex in the crystals subjected to bending stresses. Appl. Opt. 51: 5797–5805. doi:10.1364/AO.51.005797
  17. Skab I, Vasylkiv Yu, Smaga I and Vlokh R, 2011. Spin-to-orbital momentum conversion via electro-optic Pockels effect in crystals. Phys. Rev. A. 84: 043815. doi:10.1103/PhysRevA.84.043815
  18. Vasylkiv Yu, Skab I and Vlokh R, 2014. Generation of double-charged optical vortices on the basis of electro-optic Kerr effect. Appl. Opt. 53: B60–B73. doi:10.1364/AO.53.000B60
  19. Savaryn V, Vasylkiv Yu, Krupych O, Skab I and Vlokh R, 2013. Polarization singularities of optical fields caused by structural dislocations in crystals. J. Opt. 15: 044023. doi:10.1088/2040-8978/15/4/044023
  20. Desyatnikov A, Fadeyeva T A, Shvedov V G, Izdebskaya Y V, Volyar A V, Brasselet E, Neshev D N, Krolikowski W and Kivshar Y S, 2010. Spatially engineered polarization states and optical vortices in uniaxial crystals. Opt. Express. 18: 10848–10863. doi:10.1364/OE.18.010848
  21. Cincotti G, Ciatoni A and Palma C, 2002. Laguerre–Gaussian and Bessel–Gaussian beams in uniaxial crystals. J. Opt. Soc. Amer. A. 19: 1680–1688. doi:10.1364/JOSAA.19.001680
  22. Volyar A and Fadeyeva T, 2006. Laguerre-Gaussian beams with complex and real arguments in uniaxial crystals. Opt. Spectrosc. 101: 297–304. doi:10.1134/S0030400X06090190
  23. Ciattoni A, Cincotti G and Palma C, 2003. Circular polarized beams and vortex generation in uniaxial media. J. Opt. Soc. Amer. A. 20: 163–171. doi:10.1364/JOSAA.20.000163
  24. Fadeyeva T A, Rubass A F and Volyar A V, 2009. Transverse shift of a high-order paraxial vortex-beam induced by a homogeneous anisotropic medium. Phys. Rev. A. 79: 053815. doi:10.1103/PhysRevA.79.053815
  25. Flossman F, Schwarz U T, Maier M, and Dennis M R, 2005. Polarization singularities from unfolding an optical vortex through a birefringent crystal. Phys. Rev. Lett. 95: 253901–4. doi:10.1103/PhysRevLett.95.253901
  26. Berry M V and Jeffrey M R, 2007. Chapter 2. Conical diffraction: Hamilton's diabolical point at the heart of crystal optics. Progr. Opt. 50: 13–50. doi:10.1016/S0079-6638(07)50002-8
  27. Berry M V, Jeffrey M R and Mansuripur M, 2005. Orbital and spin angular momentum in conical diffraction. J. Opt. A: Pure Appl. Opt. 7: 685–690. doi:10.1088/1464-4258/7/11/011
  28. Vlokh R, Volyar A, Mys O and Krupych O, 2003. Appearance of optical vortex at conical refraction. examples of NaNO2 and YFeO3 crystals. Ukr.J.Phys.Opt. 4: 90–93. doi:10.3116/16091833/4/2/90/2003
  29. Egorov Yu, Fadeyeva T and Volyar A, 2004. The fine structure of singular beams in crystals: colours and polarization. J. Opt. A: Pure Appl. Opt. 6: S217–S228. doi:10.1088/1464-4258/6/5/014
  30. Marrucci L, 2008. Generation of helical modes of light by spin-to-orbital angular momentum conversion in inhomogeneous liquid crystals. Mol. Cryst. Liq. Cryst. 488: 148–162. doi:10.1080/15421400802240524
  31. Lu X, Wu Z, Zhang W and Chen L, 2014. Polarization singularities and orbital angular momentum sidebands from rotational symmetry broken by the Pockels effect. Sci. Rep. 4: 4865. doi:10.1038/srep04865
  32. 32. Lu X and Chen L, 2012. Spin-orbit interactions of a Gaussian light propagating in biaxial crystals. Opt. Express. 20: 11766. doi:10.1364/OE.20.011753
  33. 33. Lu X and Chen L, 2013. Anisotropic dynamics of optical vortex-beam propagating in biaxial crystals: a numerical method based on asymptotic expansion. Opt. Express. 21: 8493. doi:10.1364/OE.21.008493
  34. 34. Weber M J. Handbook of optical materials. Boca Raton, London, New York, Washington: CRC Press LLC (2003).
  35. 35. Volyar A, Shvedov V, Fadeyeva T, Desyatnikov A S, Neshev D N, Krolikowski W and Kivshar Y S, 2006. Generation of single-charge optical vortices with an uniaxial crystal. Opt. Express. 14: 3724–3729. doi:10.1364/OE.14.003724
(c) Ukrainian Journal of Physical Optics