Home
page
Other articles
in this issue |
Lasing in a hybrid-aligned
cholesteric
1Nastishin Yu.A., 2Dudok T.H., 1Hrabchak
V.I., 3Lychkovskyy E., 1Yakovlev M.Yu., 1Vankevych
P.I., 4Meyer C. and 5Pansu B.
1Hetman Petro Sahaidachnyi National Army Academy,
32 Heroes of Maidan Street, 79012 Lviv, Ukraine
2Vlokh Institute of Physical Optics, 23 Dragomanov
Street, 79005 Lviv, Ukraine
3Lviv Danylo Halytsky National Medical University,
69 Pekarska Street, 79010 Lviv, Ukraine
4Laboratoire de Physique des Systemes Complexes,
Universite de Picardie, Jules Verne, 33 rue Saint-Leu, 80039 Amiens, France
5Laboratoire de Physique de Solides, CNRS,
Univ. Paris-Sud, Université Paris-Saclay, Orsay F-91405, France
Download this
article
Abstract. Optically pumped laser generation at a long-wavelength
edge of cholesteric photonic bandgap is detected in a dye-doped cholesteric
cell with a hybrid alignment, where long axes of cholesteric molecules
are parallel to one of the substrates and perpendicular to the opposite
substrate in its close vicinity. The hybrid director alignment in the cell
is confirmed by polarization optical microscopy observations in both reflection
and transmission modes.
Keywords: lasing in liquid crystals, photonic
bandgap, polarization optical microscopy, liquid crystal textures, hybrid
director alignment
PACS: 42.55.Zz
UDC: 538.958+681.7.069.24
Ukr. J. Phys. Opt.
18 121-130
doi: 10.3116/16091833/18/3/121/2017
Received: 26.05.2017
Анотація. Зареєстровано лазерну
генерацію на довгохвильовому краю фотонної
щілини холестерика при оптичному нагнітанні
легованої барвником холестеричної комірки,
яка задає гібридну орієнтацію так, що молекули
холестерика паралельні до підкладки поблизу
однієї з підкладок, але перпендикулярні
поблизу іншої підкладки. Гібридну орієнтацію
в комірці підтверджено спостереженнями
в поляризаційному оптичному мікроскопі
в режимах пропускання та відбивання
|
|
REFERENCES
-
Kopp V I, Fan B, Vithana H K M and Genack A Z, 1998. Low-threshold lasing
at the edge of a photonic stop band in cholesteric liquid crystals. Opt.
Lett. 23: 1707–1709. doi:10.1364/OL.23.001707
-
Coles H and Morris S, 2010. Liquid-crystal lasers. Nature Photonics. 4:
676–685. doi:10.1038/nphoton.2010.184
-
Dudok T H and Nastishin Yu A, 2014. Optically pumped mirrorless lasing.
A review. Part II. Lasing in photonic crystals and microcavities. Ukr.
J. Phys. Opt. 15: 47–67. doi:10.3116/16091833/15/2/47/2014
-
Chapran M, Angioni E, John N, Breig F B, Cherpak V, Stakhira P, Tuttle
T, Volyniuk D, Grazulevicius J V, Nastishin Yu A, Lavrentovich O D and
Skabara P J, 2017. An ambipolar BODIPY derivative for a white exciplex
OLED and cholesteric liquid crystal laser towards multi-functional devices.
Appl. Mater. & Interfaces. 9: 4750−4757. doi:10.1021/acsami.6b13689
-
Morris S M, Ford A D, Gillespie C, Pivnenko M N, Hadeler O and Coles H
J, 2006. The emission characteristics of liquid-crystal lasers. J. Soc.
Inf. Disp. 14: 565–573. doi:10.1889/1.2210808
-
Dudok T H, Savaryn V I, Krupych O M, Fechan A V, Lychkovskyy E, Cherpak
V V, Pansu B and Nastishin Yu A, 2015. Lasing in imperfectly aligned cholesterics.
Appl. Opt. 54: 9644–9653. doi:10.1364/AO.54.009644
-
Dudok T H, Savaryn V I, Meyer C, Cherpak V V, Fechan A V, Lychkovskyy E
I, Pansu B and Nastishin Yu A, 2016. Lasing cholesteric capsules. Ukr.
J. Phys. Opt. 17: 169–175. doi:10.3116/16091833/17/4/169/2016
-
Kleman M, Lavrentovich O D and Nastishin Yu A. Dislocation and disclination
in mesomorphic phases. In: Dislocations in solids, vol. 12. Ed. by F R
N Nabarro and J P Hirth. Elsevier (2004). pp. 147–271. doi:10.1016/S1572-4859(05)80005-1
-
Nastishin Yu A, Polak R D, Shiyanovskii S V, Bodnar V H and Lavrentovich
O D, 1999. Nematic polar anchoring strength measured by electric field
techniques. J. Appl. Phys. 86: 4199–4213. doi:10.1063/1.371347
-
Lavrentovich O D, 2003. Fluorescence confocal polarizing microscopy: three-dimensional
imaging of the director. Pramana J. Phys. 61: 373–384. doi:10.1007/BF02708317
-
Nastyshyn S Yu, Bolesta I M, Lychkovskyy E, Vankevych P I, Yakovlev M Yu,
Pansu B and Nastishin Yu A, 2017. Ray tracing matrix approach for refractive
index mismatch aberrations in confocal microscopy. Appl. Opt. 56: 2467–2475.
doi:10.1364/AO.56.002467
-
Shribak M and Oldenbourg R, 2003. Techniques for fast and sensitive measurements
of two dimensional birefringence distributions. Appl. Opt. 42: 3009−3017.
doi:10.1364/AO.42.003009
-
Stetsyshyn Yu, Raczkowska J, Budkowski A, Awsiuk K, Kostruba A, Nastyshyn
S Yu, Harhay Kh, Lychkovskyy E, Ohar H and Nastishin Yu A, 2016. Cholesterol-based
grafted polymer brushes as alignment coating with temperature-tuned anchoring
for nematic liquid crystals. Langmuir. 32: 11029–11038. doi:10.1021/acs.langmuir.6b02946
-
Scheffer T J and Nehring J, 1977. Accurate determination of liquid-crystal
tilt bias angles J. Appl. Phys. 48: 1783–1792. doi:10.1063/1.323928
-
Andrienko D, Kurioz Y, Reznikov Y, Rosenblatt C, Petschek R, Lavrentovich
O and Subacius D, 1998. J. Appl. Phys. 83: 50–55. doi:10.1063/1.366700
-
Ziherl P, Subacius D, Strigazzi A, Pergamenshchik V M, Alexe-Ionescu A
L, Lavrentovich O D and Zumer S, 1998. Magnetic field controlled optical
phase retardationin a hybrid nematic cell. Liq. Cryst. 24: 607–612. doi:10.1080/026782998207082
-
Salter P S, Elston S J, Raynes P and Parry-Jones L A. 2009. Alignment of
the uniform lying helix structure in cholesteric liquid crystals. Jap.
J. Appl. Phys. 48: 101302-5. doi:10.1143/JJAP.48.101302
-
Gryn I, Lacaze E, Bartolino R and Zappone B, 2014. Controlling the self-assembly
of periodic defect patterns in smectic liquid crystal films with electric
fields. Adv. Funct. Mater. 25: 142–149. doi:10.1002/adfm.201402875
-
Nastishin Yu A, Kleman M and Dovgyi O B, 2002. Textural and conoscopic
studies of chiral liquid crystals possessing cholesteric – smectic A
or cholesteric – TGBA – smectic A phase transitions. Ukr. J. Phys.
Opt. 3: 1–11. doi:10.3116/16091833/3/1/1/2002
-
Dowling J P, Scalora M, Bloemer M J and Bowden Ch M, 1994. The photonic
band edge laser: A new approach to gain enhancement. J. Appl. Phys. 75:
1896–1899. doi:10.1063/1.356336
-
Dozov I and Penchev I. 1986. Structure of a hybrid aligned cholesteric
liquid crystal cell. J. de Physique. 47: 373–377. doi:10.1051/jphys:01986004703037300
-
Lewis M R and Wiltshire M C K, 1987. Hybrid aligned cholesteric: A novel
liquid-crystal alignment. Appl. Phys. Lett. 51: 1197–1199. doi:10.1063/1.98731
-
Lin Ch-H, Chiang R-H, Liu Sh-H, Kuo Ch-T and Huang Ch-Y, 2012. Rotatable
diffractive gratings based on hybrid-aligned cholesteric liquid crystals.
Opt. Express. 20: 26837–26844. doi:10.1364/OE.20.026837
-
Nose T, Miyanishi T, Aizawa Y, Ito R and Honma M. 2010. Rotational behavior
of stripe domains appearing in hybrid aligned chiral nematic liquid crystal
cells. Jap. J. Appl. Phys. 49: 051701-5. doi:10.1143/JJAP.49.051701
-
Shiyanovskii S V and Lavrentovich O D, 2003. 3D simulations of nematic
and cholesteric liquid crystals in complex geometries. SID Intnl. Digest
Tech. Papers XXXIV. 34: 664–667.
-
Karen L van der Molen, R Willem Tjerkstra, Allard P Mosk, and Ad Lagendijk,
2007. Spatial extent of random laser modes. Phys. Rev. Lett. 98: 143901-4.
doi:10.1103/PhysRevLett.98.143901
-
Nastishin Yu A and Dudok T H, 2013. Optically pumped mirrorless lasing.
A review. Part I. Random lasing. Ukr. J. Phys. Opt. 14: 146–170. doi:10.3116/16091833/14/3/146/2013
(c) Ukrainian Journal
of Physical Optics |