Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Lasing in a hybrid-aligned cholesteric

1Nastishin Yu.A., 2Dudok T.H., 1Hrabchak V.I., 3Lychkovskyy E., 1Yakovlev M.Yu.,  1Vankevych  P.I., 4Meyer C. and 5Pansu B.

1Hetman Petro Sahaidachnyi National Army Academy, 32 Heroes of Maidan Street, 79012 Lviv, Ukraine
2Vlokh Institute of Physical Optics, 23 Dragomanov Street, 79005 Lviv, Ukraine
3Lviv Danylo Halytsky National Medical University, 69 Pekarska Street, 79010 Lviv, Ukraine
4Laboratoire de Physique des Systemes Complexes, Universite de Picardie, Jules Verne, 33 rue Saint-Leu, 80039 Amiens, France
5Laboratoire de Physique de Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Orsay F-91405, France

Download this article

Abstract. Optically pumped laser generation at a long-wavelength edge of cholesteric photonic bandgap is detected in a dye-doped cholesteric cell with a hybrid alignment, where long axes of cholesteric molecules are parallel to one of the substrates and perpendicular to the opposite substrate in its close vicinity. The hybrid director alignment in the cell is confirmed by polarization optical microscopy observations in both reflection and transmission modes.

Keywords: lasing in liquid crystals, photonic bandgap, polarization optical microscopy, liquid crystal textures, hybrid director alignment

PACS: 42.55.Zz 
UDC: 538.958+681.7.069.24
Ukr. J. Phys. Opt. 18 121-130
doi: 10.3116/16091833/18/3/121/2017
Received: 26.05.2017

Анотація. Зареєстровано лазерну генерацію на довгохвильовому краю фотонної щілини холестерика при оптичному нагнітанні легованої барвником холестеричної комірки, яка задає гібридну орієнтацію так, що молекули холестерика паралельні до підкладки поблизу однієї з підкладок, але перпендикулярні поблизу іншої підкладки. Гібридну орієнтацію в комірці підтверджено спостереженнями в поляризаційному оптичному мікроскопі в режимах пропускання та відбивання
 

REFERENCES
  1. Kopp V I, Fan B, Vithana H K M and Genack A Z, 1998. Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals. Opt. Lett. 23: 1707–1709. doi:10.1364/OL.23.001707
  2. Coles H and Morris S, 2010. Liquid-crystal lasers. Nature Photonics. 4: 676–685. doi:10.1038/nphoton.2010.184
  3. Dudok T H and Nastishin Yu A, 2014. Optically pumped mirrorless lasing. A review. Part II. Lasing in photonic crystals and microcavities. Ukr. J. Phys. Opt. 15: 47–67. doi:10.3116/16091833/15/2/47/2014
  4. Chapran M, Angioni E, John N, Breig F B, Cherpak V, Stakhira P, Tuttle T, Volyniuk D, Grazulevicius J V, Nastishin Yu A, Lavrentovich O D and Skabara P J, 2017. An ambipolar BODIPY derivative for a white exciplex OLED and cholesteric liquid crystal laser towards multi-functional devices. Appl. Mater. & Interfaces. 9: 4750−4757. doi:10.1021/acsami.6b13689
  5. Morris S M, Ford A D, Gillespie C, Pivnenko M N, Hadeler O and Coles H J, 2006. The emission characteristics of liquid-crystal lasers. J. Soc. Inf. Disp. 14: 565–573. doi:10.1889/1.2210808
  6. Dudok T H, Savaryn V I, Krupych O M, Fechan A V, Lychkovskyy E, Cherpak V V, Pansu B and Nastishin Yu A, 2015. Lasing in imperfectly aligned cholesterics. Appl. Opt. 54: 9644–9653. doi:10.1364/AO.54.009644
  7. Dudok T H, Savaryn V I, Meyer C, Cherpak V V, Fechan A V, Lychkovskyy E I, Pansu B and Nastishin Yu A, 2016. Lasing cholesteric capsules. Ukr. J. Phys. Opt. 17: 169–175. doi:10.3116/16091833/17/4/169/2016
  8. Kleman M, Lavrentovich O D and Nastishin Yu A. Dislocation and disclination in mesomorphic phases. In: Dislocations in solids, vol. 12. Ed. by F R N Nabarro and J P Hirth. Elsevier (2004). pp. 147–271. doi:10.1016/S1572-4859(05)80005-1
  9. Nastishin Yu A, Polak R D, Shiyanovskii S V, Bodnar V H and Lavrentovich O D, 1999. Nematic polar anchoring strength measured by electric field techniques. J. Appl. Phys. 86: 4199–4213. doi:10.1063/1.371347
  10. Lavrentovich O D, 2003. Fluorescence confocal polarizing microscopy: three-dimensional imaging of the director. Pramana J. Phys. 61: 373–384. doi:10.1007/BF02708317
  11. Nastyshyn S Yu, Bolesta I M, Lychkovskyy E, Vankevych P I, Yakovlev M Yu, Pansu B and Nastishin Yu A, 2017. Ray tracing matrix approach for refractive index mismatch aberrations in confocal microscopy. Appl. Opt. 56: 2467–2475. doi:10.1364/AO.56.002467
  12. Shribak M and Oldenbourg R, 2003. Techniques for fast and sensitive measurements of two dimensional birefringence distributions. Appl. Opt. 42: 3009−3017. doi:10.1364/AO.42.003009
  13. Stetsyshyn Yu, Raczkowska J, Budkowski A, Awsiuk K, Kostruba A, Nastyshyn S Yu, Harhay Kh, Lychkovskyy E, Ohar H and Nastishin Yu A, 2016. Cholesterol-based grafted polymer brushes as alignment coating with temperature-tuned anchoring for nematic liquid crystals. Langmuir. 32: 11029–11038. doi:10.1021/acs.langmuir.6b02946
  14. Scheffer T J and Nehring J, 1977. Accurate determination of liquid-crystal tilt bias angles J. Appl. Phys. 48: 1783–1792. doi:10.1063/1.323928
  15. Andrienko D, Kurioz Y, Reznikov Y, Rosenblatt C, Petschek R, Lavrentovich O and Subacius D, 1998. J. Appl. Phys. 83: 50–55. doi:10.1063/1.366700
  16. Ziherl P, Subacius D, Strigazzi A, Pergamenshchik V M, Alexe-Ionescu A L, Lavrentovich O D and Zumer S, 1998. Magnetic field controlled optical phase retardationin a hybrid nematic cell. Liq. Cryst. 24: 607–612. doi:10.1080/026782998207082
  17. Salter P S, Elston S J, Raynes P and Parry-Jones L A. 2009. Alignment of the uniform lying helix structure in cholesteric liquid crystals. Jap. J. Appl. Phys. 48: 101302-5. doi:10.1143/JJAP.48.101302
  18. Gryn I, Lacaze E, Bartolino R and Zappone B, 2014. Controlling the self-assembly of periodic defect patterns in smectic liquid crystal films with electric fields. Adv. Funct. Mater. 25: 142–149. doi:10.1002/adfm.201402875
  19. Nastishin Yu A, Kleman M and Dovgyi O B, 2002. Textural and conoscopic studies of chiral liquid crystals possessing cholesteric – smectic A or cholesteric – TGBA – smectic A phase transitions. Ukr. J. Phys. Opt. 3: 1–11. doi:10.3116/16091833/3/1/1/2002
  20. Dowling J P, Scalora M, Bloemer M J and Bowden Ch M, 1994. The photonic band edge laser: A new approach to gain enhancement. J. Appl. Phys. 75: 1896–1899. doi:10.1063/1.356336
  21. Dozov I and Penchev I. 1986. Structure of a hybrid aligned cholesteric liquid crystal cell. J. de Physique. 47: 373–377. doi:10.1051/jphys:01986004703037300
  22. Lewis M R and Wiltshire M C K, 1987. Hybrid aligned cholesteric: A novel liquid-crystal alignment. Appl. Phys. Lett. 51: 1197–1199. doi:10.1063/1.98731
  23. Lin Ch-H, Chiang R-H, Liu Sh-H, Kuo Ch-T and Huang Ch-Y, 2012. Rotatable diffractive gratings based on hybrid-aligned cholesteric liquid crystals. Opt. Express. 20: 26837–26844. doi:10.1364/OE.20.026837
  24. Nose T, Miyanishi T, Aizawa Y, Ito R and Honma M. 2010. Rotational behavior of stripe domains appearing in hybrid aligned chiral nematic liquid crystal cells. Jap. J. Appl. Phys. 49: 051701-5. doi:10.1143/JJAP.49.051701
  25. Shiyanovskii S V and Lavrentovich O D, 2003. 3D simulations of nematic and cholesteric liquid crystals in complex geometries. SID Intnl. Digest Tech. Papers XXXIV. 34: 664–667.
  26. Karen L van der Molen, R Willem Tjerkstra, Allard P Mosk, and Ad Lagendijk, 2007. Spatial extent of random laser modes. Phys. Rev. Lett. 98: 143901-4. doi:10.1103/PhysRevLett.98.143901
  27. Nastishin Yu A and Dudok T H, 2013. Optically pumped mirrorless lasing. A review. Part I. Random lasing. Ukr. J. Phys. Opt. 14: 146–170. doi:10.3116/16091833/14/3/146/2013
(c) Ukrainian Journal of Physical Optics