Home
page
Other articles
in this issue |
Comprehensive analysis
of two different graded-index photonic-crystal lenses
Gharaati A. and Miri N.
Department of Physics, Payame Noor University, Tehran, Iran
Download this
article
Abstract. We investigate two alternative approaches for implementing
graded-index (GRIN) photonic-crystal (PC) structures that reveal a focusing
effect. Gradient of the refractive index is achieved either using a symmetry-reduction
approach (a structure of type I) or varying a filling fraction of PC elements
(a structure of type II). We test the first structure for the frequencies
located inside the first and second bands of the dispersion diagram. The
focusing effect of the second structure characteristic for the frequencies
located above the bandgap is stronger than that for the frequencies below
the bandgap. It is demonstrated that variations of filling fractions of
the elliptical air holes in the structure of type II produce a GRIN lens
that manifests a pronounced focusing effect. We have also compared the
focusing effects of the latter structure for the TE and TM polarizations.
The both structures suggested in the present work can work in a broad enough
band region
Keywords: photonic crystals, band structure,
lenses, graded refractive index
PACS: 42.70.Qs; 42.79.Bh; 42.79.Ry
UDC: 535.361.13
Ukr. J. Phys. Opt.
18 109-119
doi: 10.3116/16091833/18/2/109/2017
Received: 08.03.2017
Анотація. Досліджено два альтернативні
підходи до реалізації градієнтних фотонно-кристалічних
(ФК) структур, яким притаманний ефект фокусування.
Градієнт показника заломлення досягають
з використанням підходу пониження симетрії
(структура типу I) або шляхом зміни коефіцієнта
заповнення елементів ФК (структура типу
II). Першу структуру досліджено для частот,
розміщених усередині першої та другої
смуг дисперсійної діаграми. Виявлено, що
ефект фокусування другої структури для
частот, розміщених вище забороненої зони,
сильніший, аніж для частот, нижчих за заборону
зону. Показано, що зміни коефіцієнта заповнення
еліптичних повітряних отворів у структурі
типу II формують градієнтну лінзу, яка виявляє
яскраво виражений ефект фокусування. Виконано
порівняння характеристик фокусування
останньою структурою для світла з поляризаціями
ТЕ і ТМ. Обидві структури, запропоновані
в цій роботі, можуть працювати в досить
широкосмуговій області. |
|
REFERENCES
-
Yablonovitch E, 1987. Inhibited spontaneous emission in solid-state physics
and electronics. Phys. Rev. Lett. 58: 2059. doi:10.1103/PhysRevLett.58.2059
-
John S, 1987. Strong localization of photons in certain disordered dielectric
superlattices. Phys. Rev. Lett. 58: 2486. doi:10.1103/PhysRevLett.58.2486
-
Lončar M, Vučković J and Scherer A, 2001.Methods for controlling positions
of guided modes of photonic-crystal waveguides, J. Opt. Soc. Amer. B. 18:
1362–1368. doi:10.1364/JOSAB.18.001362
-
Kurt H and Citrin D S, 2007. Photonic-crystal heterostructure waveguides.
IEEE J. Quant. Electron. 43: 78–84. doi:10.1109/JQE.2006.885206
-
Zhou W D, Sabarinathan J, Bhattacharya P, Kochman B, Berg E, Yu P C and
Pang S, 2001. Characteristics of a photonic bandgap single defect microcavity
electroluminescent device, IEEE J. Quant. Electron. 37: 1153–1160. doi:10.1109/3.945320
-
Luo C, Johnson S G, Joannopoulos J and Pendry J, 2002. All-angle negative
refraction with-out negative effective index. Phys. Rev. B. 65: 201104.
doi:10.1103/PhysRevB.65.201104
-
Kosaka H, Kawashima T, Tomita A, Notomi M, Tamamura T, Sato T and Kawakami
S, 1998. Superprism phenomena in photonic crystals. Phys. Rev. B. 58: R10096.
doi:10.1103/PhysRevB.58.R10096
-
Amet J, Baida F I, Burr G W and Bernal M P, 2008. The superprism effect
in lithium niobate photonic crystals for ultra-fast, ultra-compact electro-optical
switching. Photon. Nanostr. 6: 47–59. doi:10.1016/j.photonics.2007.09.002
-
Kosaka H, Kawashima T, Tomita A, Notomi M, Tamamura T, Sato T and Kawakami
S, 1999. Self-collimating phenomena in photonic crystals. Appl. Phys. Lett.
74: 1212–1214. doi:10.1063/1.123502
-
Kim T T, Lee S G, Park H Y, Kim J E and Kee C S, 2010. Asymmetric Mach-Zehnder
filter based on self-collimation phenomenon in two-dimensional photonic
crystals. Opt. Express. 18: 5384–5389. doi:10.1364/OE.18.005384
-
Centeno E and Cassagne D, 2005. Graded photonic crystals. Opt. Lett. 30:
2278–2280. doi:10.1364/OL.30.002278
-
Centeno E, Cassagne D and Albert J P, 2006. Mirage and superbending effect
in two-dimensional graded photonic crystals. Phys. Rev. B. 73: 235119.
doi:10.1103/PhysRevB.73.235119
-
Turduev M, Oner B, Giden I and Kurt H, 2013. Mode transformation using
graded photonic crystals with axial asymmetry. J. Opt. Soc. Amer. B. 30:
1569–1579. doi:10.1364/JOSAB.30.001569
-
Oner B B, Turduev M, Giden I H and Kurt H, 2013. Efficient mode converter
design using asymmetric graded index photonic structures. Opt. Lett. 38:
220–222. doi:10.1364/OL.38.000220
-
Yilmaz D, Giden I H, Turduev M and Kurt H, 2013. Design of a Wavelength
selective medium by graded index photonic crystals. IEEE J. Quant. Electron.
49: 477–484. doi:10.1109/JQE.2013.2252884
-
Le Roux X, Caer C, Marris-Morini D, Izard N, Vivien L and Cassan E, 2011.
Wavelength demultiplexer based on a two-dimensional graded photonic crystal.
IEEE Photon. Tech. Lett. 23: 1094–1096. doi:10.1109/LPT.2011.2151855
-
Kurt H, Oner B B, Turduev M and Giden I H, 2012. Modified Maxwell fish-eye
approach for efficient coupler design by graded photonic crystals. Opt.
Express. 20: 22018–22033. doi:10.1364/OE.20.022018
-
Turduev M, Giden I H and Kurt H, 2015. Design of flat lens-like graded
index medium by photonic crystals: Exploring both low and high frequency
regimes. Opt. Commun. 339: 22–33. doi:10.1016/j.optcom.2014.11.048
-
Feng S, Li Z Y, Feng Z F, Cheng B Y and Zhang D Z, 2005. Imaging properties
of an elliptical-rod photonic-crystal slab lens. Phys. Rev. B. 72: 075101.
doi:10.1103/PhysRevB.72.075101
-
Ren K and Ren X, 2011. Controlling light transport by using a graded photonic
crystal. Appl. Opt. 50: 2152–2157. doi:10.1364/AO.50.002152
-
Ren K and Ren X, 2012. Y-shaped beam splitter by graded structure design
in a photonic crystal. Chin. Sci. Bull. 57: 1241–1245. doi:10.1007/s11434-012-5007-4
-
Cabuz A I, Centeno E and Cassagne D, 2004. Superprism effect in bidimensional
rectangular photonic crystals, Appl. Phys. Lett. 84: 2031–2033. doi:10.1063/1.1688981
-
Xu Y, Chen X J, Lan S, Guo Q, Hu W and Wu L J, 2008. The all-angle self-collimating
phenomenon in photonic crystals with rectangular symmetry, J. Opt. A. 10:
1–5. doi:10.1088/1464-4258/10/8/085201
-
Ogawa Y, Omura Y and Iida Y, 2005. Study on self-collimated light-focusing
device using the 2-D photonic crystal with a parallelogram lattice. J.
Lightwave Technol. 23: 4374–4381. doi:10.1109/JLT.2005.859431
-
GaoD, Zhou Z and Citrin D S, 2008. Self-collimated waveguide bends and
partial band-gap reflection of photonic crystals with parallelogram lattice.
J. Opt. Soc. Amer. A. 25: 791–795. doi:10.1364/JOSAA.25.000791
-
Turduev M, Giden I H and Kurt H, 2013. Extraordinary wavelength dependence
of self-collimation effect in photonic crystal with low structural symmetry.
Photon. Nanostr. 11: 241–252. doi:10.1016/j.photonics.2013.04.004
-
Kurt H, Turduev M and Giden I H, 2012. Crescent shaped dielectric periodic
structure for light manipulation. Opt. Express. 20: 7184–7194. doi:10.1364/OE.20.007184
-
Giden I H, Eti N, Rezaei B and Kurt H, 2016. Adaptive graded index photonic
crystal lens design via nematic liquid crystals. IEEE. J. Quantum. Electron.
52: 1–7. doi:10.1109/JQE.2016.2605398
-
Trifonov T, Marsal L F, Rodriguez A, Pallares J and Alcubilla R, 2004.
Effects of symmetry reduction in two-dimensional square and triangular
lattices. Phys. Rev. B. 69: 235112. doi:10.1103/PhysRevB.69.235112
(c) Ukrainian Journal
of Physical Optics |