Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Anisotropy of acoustooptic figure of merit in KH2PO4 crystals

Mys O., Krupych O. and Vlokh R.

Vlokh Institute of Physical Optics, 23 Dragomanov Street, 79005 Lviv, Ukraine

Download this article

Abstract. We have analyzed the anisotropy of acoustooptic figure of merit M2 for KH2PO4 crystals. Basing on our results, the highest M2 coefficient, 7.1×10–15 s3/kg, is achieved for the case of isotropic acoustooptic interaction. Then the optical wave, which is polarized in the XY plane and propagates along the direction [-110], interacts with the longitudinal acoustic wave propagating in the same plane along [110]. For the case of anisotropic interactions, the maximum M2 value is smaller, 5.3×10–15 s3/kg. Then the slow transverse acoustic wave propagating in the XZ or YZ planes close to the X axis interacts with the optical wave propagating close to the optic axis.

Keywords: anisotropy, acoustooptic figure of merit, acoustic wave velocity, elastooptic coefficients, KH2PO4 crystals, acoustooptic tunable filters

PACS: 78.20.hb, 78.20.Ci, 42.70.-a, 85.60.-q
UDC: 535.42+ 535.012.21+ 535.551
Ukr. J. Phys. Opt. 18 83-94
doi: 10.3116/16091833/18/2/83/2017
Received: 15.03.2016

Анотація. У роботі проаналізовано анізотропію коефіцієнта акустооптичної якості кристалів KH2PO4. Показано, що найвище значення цього коефіцієнта (7.1×10–15 с3/кг) досягається при ізотропній акустооптичній взаємодії поляризованої в площині XY оптичної хвилі, яка поширюється вздовж напрямку [-110], із поздовжньою акустичною хвилею, яка поширюється в цій же площині в напрямку [110]. У разі анізотропної дифракції максимальне значення коефіцієнта M2 менше (5.3×10–15 с3/кг) і відповідає взаємодії повільної поперечної акустичної хвилі, яка поширюється в площинах XZ або YZ у напрямку близькому до осі X, з оптичною хвилею, яка поширюється майже вздовж оптичної осі кристала. 

REFERENCES
  1. Fukami T, 1990. Refinement of the crystal structure of KH2PO4 in the ferroelectric phase. Phys. Stat. Solidi (a). 117: K93. doi:10.1002/pssa.2211170234
  2. Reyné S, Duchateau G, Natoli J-Y and Lamaignère L, 2009. Laser-induced damage of KDP crystals by 1ω nanosecond pulses: influence of crystal orientation. Opt. Express. 17: 21652–21665. doi:10.1364/OE.17.021652
  3. Endert H and Melle W, 1982. Laser-induced damage in KDP crystals. The influence of growth ghosts and growth bands. Phys. Stat. Solidi (a). 74: 141–148. doi:10.1002/pssa.2210740116
  4. Mironov S Yu, Ginzburg V N, Lozhkarev V V, Luchinin G A, Kirsanov A V, Yakovlev I V, Khazanov E A and Shaykin A A, 2011. Highly efficient second-harmonic generation of intense femtosecond pulses with a significant effect of cubic nonlinearity. Quant. Electron. 41: 963–967. doi:10.1070/QE2011v041n11ABEH014694
  5. Mironov S, Lozhkarev V, Ginzburg V and Khazanov E, 2009. High-efficiency second-harmonic generation of superintense ultrashort laser pulses. Appl. Opt. 48: 2051–2057. doi:10.1364/AO.48.002051 
  6. Zhu H, Wang T, Zheng W, Yuan P and Qian L, 2004. Efficient second harmonic generation of femtosecond laser at 1 μm. Opt. Expess. 12: 2150–2155. doi:10.1364/OPEX.12.002150
  7. Aoyama M, Harimoto T, Ma J, Akahane Y and Yamakawa K. 2001, Second-harmonic generation of ultra-high intensity femtosecond pulses with a KDP crystal. Opt. Express. 9: 579–585. doi:10.1364/OE.9.000579
  8. http://www.inradoptics.com/pdfs/Inrad_AN__FemtosecondTiSapphSHG.pdf
  9. Coudreau S, Kaplan D and Tournois P, 2006. Ultraviolet acoustooptic programmable dispersive filter laser pulse shap-ing in KDP. Opt. Lett. 31: 1899–1901. doi:10.1364/OL.31.001899
  10. Dekemper E, Fussen D, Van Opstal B, Vanhamel J, Pieroux D, Vanhellemont F, Mateshvilia N, Franssens G, Volosh-inov V, Janssen C and Elandaloussi H, 2014. ALTIUS: a spaceborne AOTF-based UV-VIS-NIR hyperspectral imager for atmospheric remote sensing. Proc. SPIE. 9241: 92410L-1–92410L-10.
  11. Gupta N and Voloshinov V, 2004. Hyperspectral imager, from ultraviolet to visible, with a KDP acousto-optic tunable filter. Appl. Opt. 43: 2752–2759. doi:10.1364/AO.43.002752
  12. Gupta N and Voloshinov V, 2014. Spectral characterization in deep UV of an improved imaging KDP acousto-optic tunable filter. J. Opt. 16: 035301–035310 . doi:10.1088/2040-8978/16/3/035301
  13. Hov O, Tropospheric ozone research: ozone in the regional and sub-regional context. Berlin: Springer (1997). doi:10.1007/978-3-642-58729-0
  14. Gupta L, Sharma R C, Razdan A K and Maini A K, 2014. Laser induced fluorescence of biochemical for UV LIDAR application. J. Fluoresc. 24:709–711. doi:/10.1007/s10895-013-1341-4
  15. David G, Thomas B, Dupart Y, D'Anna B, George C, Miffre A and Rairoux P, 2014. UV polarization lidar for remote sensing new particles formation in the atmosphere. Opt. Express. 22: A1009–A1022.doi:10.1364/OE.22.0A1009
  16. Shibata T, Fukuda T, Narikiyo T and Maeda M, 1987. Evaluation of the solar-blind effect in ultraviolet ozone lidar with Raman lasers. Appl. Opt. 26: 2604–2608. doi:10.1364/AO.26.002604
  17. Wolfram E, Salvador J, Orte F, Delia R and Quel E, 2012. Systematic ozone and solar UV measurements in the observatorio atmosférico de la Patagonia Austral, Argentina. Revista Boliviana de Física. 20: 13–15.
  18. Zhang J, Wang S, Fang C, Sun X, Gu Q, Li Y, Wang B, Liu B and Mu X, 2007. Growth habit and transparency of sulphate doped KDP crystal. Mater. Lett. 61: 2703–2706. doi:10.1016/j.matlet.2006.03.161
  19. Mys O, Kostyrko M, Smyk M, Krupych O and Vlokh R, 2014. Anisotropy of acoustooptic figure of merit in optically isotropic media. Appl. Opt. 53: 4616–4627. doi:10.1364/AO.53.004616
  20. Mys O, Kostyrko M, Smyk M, Krupych O and Vlokh R, 2014. Anisotropy of acoustooptic figure of merit for TeO2 crystals. 1. Isotropic diffraction. Ukr. J. Phys. Opt. 15: 132–154. doi:10.3116/16091833/15/3/132/2014
  21. Mys O, Kostyrko M, Krupych O and Vlokh R, 2014. Anisotropy of acoustooptic figure of merit for TeO2 crystals. 2. Anisotropic diffraction. Ukr. J. Phys. Opt. 16: 38–60. doi:10.3116/16091833/16/1/38/2015
  22. Martynyuk-Lototska I, Mys O, Dudok T, Adamiv V, Smirnov Y and Vlokh R, 2008. Acousto-optic interaction in α-BaB2O4 and Li2B4O7 crystals. Appl. Opt. 47: 3446–3454. doi:10.1364/AO.47.003446
  23. Mys O, Krupych O, Kostyrko M and Vlokh R, 2016. Anisotropy of acousto-optic figure of merit for LiNbO3 crystals: anisotropic diffraction. Erratum. Appl. Opt. 55: 9823–9829. doi:10.1364/AO.55.009823
  24. Mys O, Kostyrko M, Krupych O and Vlokh R, 2015. Anisotropy of the acousto-optic figure of merit for LiNbO3 crys-tals: isotropic diffraction. Appl. Opt. 54: 8176–8186. doi:10.1364/AO.54.008176
  25. Mys O, Krupych O and Vlokh R, 2016. Anisotropy of an acousto-optic figure of merit for NaBi(MoO4)2 crystals. Appl. Opt. 55: 7941–7955. doi:10.1364/AO.55.007941
  26. Pyle J R, 1966. Laser modulation using linear electro-optic crystals. Tech. Note PAD 125, 35 p. NASA N67–27128.
  27. Shaskolskaya M P, Acoustic crystals. Moscow: Nauka, 1982.
  28. Mys O, Kostyrko M, Vasylkiv Yu and Vlokh R, 2015. Anomalous behaviour of acoustooptic figure of merit under the conditions of collinear diffraction. Ukr. J. Phys. Opt. 16: 179–183. doi:10.3116/16091833/16/4/187/2015
  29. Smith T and Korpel A, 1965. Measurement of light-sound interaction efficiencies in solids. IEEE J. Quant. Electron. 1: 283–284. doi:10.1109/JQE.1965.1072224
  30. Bystrova T G and Fedorov F I, 1968. Debye temperatures of tetragonal and trigonal crystals. Sov. Phys.: Crysallogr. 12: 493–498.
  31. Balakshyi V I, Paryhyn V N and Chyrkov L E. Basic physics of acoustooptics. Moscow: Radio and Communications, 1985.
  32. Ohmachi Y, Uchida N and Niizeki N, 1972. Acoustic wave propagation in TeO2 single crystal. Journ. Acoust. Soc. Amer. 51: 164–168. doi:10.1121/1.1912826
  33. Price W J and Huntington H B, 1950. Acoustical properties of anisotropic materials. Journ. Acoust. Soc. Amer. 22: 32–37. doi:10.1121/1.1906571
  34. Avakyants L P, Kiselev D F, Perelomova N V, Sugrej V I, 1983. Elastooptics of KH2PO4, KD2PO4 and RbH2PO4. Fiz. Tverd. Tela. 25: 580–582.
  35. Molchanov V, Chizhikov S and Makarov O, 2008. Quasicollinear acoustooptic tunable filters based on KDP single crystal. Intern. Conf. Acoustics_08: 827–831. doi:10.1121/1.2933135
(c) Ukrainian Journal of Physical Optics