Home
page
Other articles
in this issue |
Anisotropy of acoustooptic
figure of merit in KH2PO4 crystals
Mys O., Krupych O. and Vlokh R.
Vlokh Institute of Physical Optics, 23 Dragomanov Street,
79005 Lviv, Ukraine
Download this
article
Abstract. We have analyzed the anisotropy of acoustooptic figure
of merit M2 for KH2PO4 crystals. Basing
on our results, the highest M2 coefficient, 7.1×10–15
s3/kg, is achieved for the case of isotropic acoustooptic interaction.
Then the optical wave, which is polarized in the XY plane and propagates
along the direction [-110], interacts with the longitudinal acoustic wave
propagating in the same plane along [110]. For the case of anisotropic
interactions, the maximum M2 value is smaller, 5.3×10–15
s3/kg. Then the slow transverse acoustic wave propagating in
the XZ or YZ planes close to the X axis interacts with the optical wave
propagating close to the optic axis.
Keywords: anisotropy, acoustooptic figure of
merit, acoustic wave velocity, elastooptic coefficients, KH2PO4 crystals,
acoustooptic tunable filters
PACS: 78.20.hb, 78.20.Ci, 42.70.-a, 85.60.-q
UDC: 535.42+ 535.012.21+ 535.551
Ukr. J. Phys. Opt.
18 83-94
doi: 10.3116/16091833/18/2/83/2017
Received: 15.03.2016
Анотація. У роботі проаналізовано
анізотропію коефіцієнта акустооптичної
якості кристалів KH2PO4.
Показано, що найвище значення цього коефіцієнта
(7.1×10–15 с3/кг) досягається
при ізотропній акустооптичній взаємодії
поляризованої в площині XY оптичної хвилі,
яка поширюється вздовж напрямку [-110], із
поздовжньою акустичною хвилею, яка поширюється
в цій же площині в напрямку [110]. У разі анізотропної
дифракції максимальне значення коефіцієнта
M2 менше (5.3×10–15 с3/кг)
і відповідає взаємодії повільної поперечної
акустичної хвилі, яка поширюється в площинах
XZ або YZ у напрямку близькому до осі X, з оптичною
хвилею, яка поширюється майже вздовж оптичної
осі кристала. |
|
REFERENCES
-
Fukami T, 1990. Refinement of the crystal structure of KH2PO4 in the ferroelectric
phase. Phys. Stat. Solidi (a). 117: K93. doi:10.1002/pssa.2211170234
-
Reyné S, Duchateau G, Natoli J-Y and Lamaignère L, 2009. Laser-induced
damage of KDP crystals by 1ω nanosecond pulses: influence of crystal orientation.
Opt. Express. 17: 21652–21665. doi:10.1364/OE.17.021652
-
Endert H and Melle W, 1982. Laser-induced damage in KDP crystals. The influence
of growth ghosts and growth bands. Phys. Stat. Solidi (a). 74: 141–148.
doi:10.1002/pssa.2210740116
-
Mironov S Yu, Ginzburg V N, Lozhkarev V V, Luchinin G A, Kirsanov A V,
Yakovlev I V, Khazanov E A and Shaykin A A, 2011. Highly efficient second-harmonic
generation of intense femtosecond pulses with a significant effect of cubic
nonlinearity. Quant. Electron. 41: 963–967. doi:10.1070/QE2011v041n11ABEH014694
-
Mironov S, Lozhkarev V, Ginzburg V and Khazanov E, 2009. High-efficiency
second-harmonic generation of superintense ultrashort laser pulses. Appl.
Opt. 48: 2051–2057. doi:10.1364/AO.48.002051
-
Zhu H, Wang T, Zheng W, Yuan P and Qian L, 2004. Efficient second harmonic
generation of femtosecond laser at 1 μm. Opt. Expess. 12: 2150–2155.
doi:10.1364/OPEX.12.002150
-
Aoyama M, Harimoto T, Ma J, Akahane Y and Yamakawa K. 2001, Second-harmonic
generation of ultra-high intensity femtosecond pulses with a KDP crystal.
Opt. Express. 9: 579–585. doi:10.1364/OE.9.000579
-
http://www.inradoptics.com/pdfs/Inrad_AN__FemtosecondTiSapphSHG.pdf
-
Coudreau S, Kaplan D and Tournois P, 2006. Ultraviolet acoustooptic programmable
dispersive filter laser pulse shap-ing in KDP. Opt. Lett. 31: 1899–1901.
doi:10.1364/OL.31.001899
-
Dekemper E, Fussen D, Van Opstal B, Vanhamel J, Pieroux D, Vanhellemont
F, Mateshvilia N, Franssens G, Volosh-inov V, Janssen C and Elandaloussi
H, 2014. ALTIUS: a spaceborne AOTF-based UV-VIS-NIR hyperspectral imager
for atmospheric remote sensing. Proc. SPIE. 9241: 92410L-1–92410L-10.
-
Gupta N and Voloshinov V, 2004. Hyperspectral imager, from ultraviolet
to visible, with a KDP acousto-optic tunable filter. Appl. Opt. 43: 2752–2759.
doi:10.1364/AO.43.002752
-
Gupta N and Voloshinov V, 2014. Spectral characterization in deep UV of
an improved imaging KDP acousto-optic tunable filter. J. Opt. 16: 035301–035310
. doi:10.1088/2040-8978/16/3/035301
-
Hov O, Tropospheric ozone research: ozone in the regional and sub-regional
context. Berlin: Springer (1997). doi:10.1007/978-3-642-58729-0
-
Gupta L, Sharma R C, Razdan A K and Maini A K, 2014. Laser induced fluorescence
of biochemical for UV LIDAR application. J. Fluoresc. 24:709–711. doi:/10.1007/s10895-013-1341-4
-
David G, Thomas B, Dupart Y, D'Anna B, George C, Miffre A and Rairoux P,
2014. UV polarization lidar for remote sensing new particles formation
in the atmosphere. Opt. Express. 22: A1009–A1022.doi:10.1364/OE.22.0A1009
-
Shibata T, Fukuda T, Narikiyo T and Maeda M, 1987. Evaluation of the solar-blind
effect in ultraviolet ozone lidar with Raman lasers. Appl. Opt. 26: 2604–2608.
doi:10.1364/AO.26.002604
-
Wolfram E, Salvador J, Orte F, Delia R and Quel E, 2012. Systematic ozone
and solar UV measurements in the observatorio atmosférico de la Patagonia
Austral, Argentina. Revista Boliviana de Física. 20: 13–15.
-
Zhang J, Wang S, Fang C, Sun X, Gu Q, Li Y, Wang B, Liu B and Mu X, 2007.
Growth habit and transparency of sulphate doped KDP crystal. Mater. Lett.
61: 2703–2706. doi:10.1016/j.matlet.2006.03.161
-
Mys O, Kostyrko M, Smyk M, Krupych O and Vlokh R, 2014. Anisotropy of acoustooptic
figure of merit in optically isotropic media. Appl. Opt. 53: 4616–4627.
doi:10.1364/AO.53.004616
-
Mys O, Kostyrko M, Smyk M, Krupych O and Vlokh R, 2014. Anisotropy of acoustooptic
figure of merit for TeO2 crystals. 1. Isotropic diffraction. Ukr. J. Phys.
Opt. 15: 132–154. doi:10.3116/16091833/15/3/132/2014
-
Mys O, Kostyrko M, Krupych O and Vlokh R, 2014. Anisotropy of acoustooptic
figure of merit for TeO2 crystals. 2. Anisotropic diffraction. Ukr. J.
Phys. Opt. 16: 38–60. doi:10.3116/16091833/16/1/38/2015
-
Martynyuk-Lototska I, Mys O, Dudok T, Adamiv V, Smirnov Y and Vlokh R,
2008. Acousto-optic interaction in α-BaB2O4 and Li2B4O7 crystals. Appl.
Opt. 47: 3446–3454. doi:10.1364/AO.47.003446
-
Mys O, Krupych O, Kostyrko M and Vlokh R, 2016. Anisotropy of acousto-optic
figure of merit for LiNbO3 crystals: anisotropic diffraction. Erratum.
Appl. Opt. 55: 9823–9829. doi:10.1364/AO.55.009823
-
Mys O, Kostyrko M, Krupych O and Vlokh R, 2015. Anisotropy of the acousto-optic
figure of merit for LiNbO3 crys-tals: isotropic diffraction. Appl. Opt.
54: 8176–8186. doi:10.1364/AO.54.008176
-
Mys O, Krupych O and Vlokh R, 2016. Anisotropy of an acousto-optic figure
of merit for NaBi(MoO4)2 crystals. Appl. Opt. 55: 7941–7955. doi:10.1364/AO.55.007941
-
Pyle J R, 1966. Laser modulation using linear electro-optic crystals. Tech.
Note PAD 125, 35 p. NASA N67–27128.
-
Shaskolskaya M P, Acoustic crystals. Moscow: Nauka, 1982.
-
Mys O, Kostyrko M, Vasylkiv Yu and Vlokh R, 2015. Anomalous behaviour of
acoustooptic figure of merit under the conditions of collinear diffraction.
Ukr. J. Phys. Opt. 16: 179–183. doi:10.3116/16091833/16/4/187/2015
-
Smith T and Korpel A, 1965. Measurement of light-sound interaction efficiencies
in solids. IEEE J. Quant. Electron. 1: 283–284. doi:10.1109/JQE.1965.1072224
-
Bystrova T G and Fedorov F I, 1968. Debye temperatures of tetragonal and
trigonal crystals. Sov. Phys.: Crysallogr. 12: 493–498.
-
Balakshyi V I, Paryhyn V N and Chyrkov L E. Basic physics of acoustooptics.
Moscow: Radio and Communications, 1985.
-
Ohmachi Y, Uchida N and Niizeki N, 1972. Acoustic wave propagation in TeO2
single crystal. Journ. Acoust. Soc. Amer. 51: 164–168. doi:10.1121/1.1912826
-
Price W J and Huntington H B, 1950. Acoustical properties of anisotropic
materials. Journ. Acoust. Soc. Amer. 22: 32–37. doi:10.1121/1.1906571
-
Avakyants L P, Kiselev D F, Perelomova N V, Sugrej V I, 1983. Elastooptics
of KH2PO4, KD2PO4 and RbH2PO4. Fiz. Tverd. Tela. 25: 580–582.
-
Molchanov V, Chizhikov S and Makarov O, 2008. Quasicollinear acoustooptic
tunable filters based on KDP single crystal. Intern. Conf. Acoustics_08:
827–831. doi:10.1121/1.2933135
(c) Ukrainian Journal
of Physical Optics |