Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Detection of fungi using a long-period fibre grating

1Gambhir M., 1Gupta S., 2John P., 3Mahakud R., 3Kumar J. and 3Prakash O. 

1ECED, SVNIT, Surat, India
2Department of Plant Pathology, Navsari Agriculture University, Navsari, India
3Laser System Engineering Division, RRCAT, Indore, India

Download this article

Abstract. We present the first-time application of long-period fibre gratings written with a copper-vapour laser for detection of fungi in plants. The long-period gratings are used for identification of Trichoderma fungi species. A significance of our work lies in the facts that these bioagents protect plant roots against pathogens that can cause serious fungal diseases, resulting in great crop yield losses and, moreover, these can cause a lethal effect on human beings. We study such Trichoderma species as T. Harzianum, T. Viride and T. Longibacterium. They reveal characteristic attenuation peaks respectively at the resonance wavelengths 1524, 1520 and 1522 nm. The corresponding transmission dips change from 63.75 dB for the case of water to 54.85, 57.34 and 59.76 dB for the cases of water solutions of T. Harzianum, T. Viride and T. Longibacterium, respectively.

Keywords: long-period fibre gratings, surrounding refractive index,  linearly polarized modes

PACS: 07.07.Df, 42.81.Pa
UDC: 535.8
Ukr. J. Phys. Opt. 18 77-82
doi: 10.3116/16091833/18/2/77/2017
Received: 04.12.2016

Анотація. Вперше продемонстровано можливість застосування довгоперіодичних волоконних дифракційних ґраток, записаних за допомогою лазера на парах міді, для виявлення грибів у рослинах. ЦІ довгоперіодичні ґратки використано для ідентифікації видів грибів Trichoderma. Значимість наших об’єктів полягає в тому, що ці біоагенти захищають коріння рослин від патогенних мікроорганізмів, які можуть викликати серйозні грибкові захворювання, що призводять до значних втрат врожайності і, крім того, ці об’єкти можуть мати летальний вплив на людину. Такі види Trichoderma як Т. Harzianum, Т. Viride і Т. Longibacterium виявляють характерні піки загасання відповідно на резонансних довжинах хвиль 1524, 1520 і 1522 нм. Відповідні провали в оптичному пропусканні зменшуються від 63,75 дБ для води до 54,85, 57,34 і 59,76 дБ для водних розчинів Т.Harzianum, Т. Viride і Т. Longibacterium, відповідно.

REFERENCES
  1. Vengsarkar A M, Lemaire P J, Judkins J B, Bhatia V, Erdogan T and Sipe J E, 1996. Long-period fiber gratings as band-rejection filters. J. Lightwave Technol. 14: 58–65. doi:10.1109/50.476137
  2. Bhatia V, 1999. Applications of long-period gratings to single and multi-parameter sensing. Opt. Express. 4: 457–466. doi:10.1364/OE.4.000457
  3. Wang Y P, Xiao L, Wang D N and Jin W, 2006. Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity. Opt. Lett. 31: 3414–3416. doi:10.1364/OL.31.003414
  4. Taghipour A, Rostami A, Bahrami M, Baghban H and Dolatyari M, 2014. Comparative study between LPFG-and FBG-based bending sensors. Opt. Commun. 312: 99–105. doi:10.1016/j.optcom.2013.09.020
  5. Shu X, Allsop T, Gwandu B, Zhang L and Bennion I, 2001. High-temperature sensitivity of long-period gratings in B–Ge codoped fiber. IEEE Photon. Technol. Lett. 13: 818–820. doi:10.1109/68.935814
  6. Kher S, Chaubey S, Kishore J and Oak S M, 2013. Detection of fuel adulteration with high sensitivity using turnaround point long period fiber gratings in B/Ge doped fibers. IEEE Sensors J. 13: 4482–4486. doi:10.1109/JSEN.2013.2270312
  7. Hochreiner H, Cada M and Wentzell P D, 2008. Modeling the response of a long-period fiber grating to ambient refractive index change in chemical sensing applications. J. Lightwave Technol. 26: 1986–1992. doi:10.1109/JLT.2007.912022 
  8. Mishra V, Jain S C, Singh N, Poddar G C and Kapur P, 2008. Fuel adulteration detection using long period fiber grating sensor technology. J. Sci. Industr. Res. 46: 106–110.
  9. Libish T M, Linesh J, Biswas P, Bandyopadhyay S, Dasgupta K and Radhakrishnan P, 2010. Fiber optic long period grating based sensor for coconut oil adulteration detection. Sensors & Transducers. 114: 102–111.
  10.  Libish T M, Linesh J, Bobby M C, Biswas P, Bandypadhyay S, Dasgupta K and Radhakrshnan P, 2011. Fiber optic sensor for the adulteration detection of edible oils. Optoelectron. Adv. Mat. - Rapid Commun. 5: 68–72.
  11. Kher S, Chaubey S, Kashyap R and Oak S M, 2012. Turnaround-point long-period fiber gratings (TAP-LPGs) as high-radiation-dose sensors. IEEE Photon. Technol. Letters 24: 742–744. doi:10.1109/LPT.2012.2187637
  12. Chiavaioli F, Biswas P, Trono C, Bandyopadhyay S, Giannetti A, Tombelli S, Basumallick N, Dasgupta K and Baldini F, 2014. Towards sensitive label-free immunosensing by means of turn-around point long period fiber gratings. Biosensors and Bioelectronics. 60: 305–310. doi:10.1016/j.bios.2014.04.042 
  13. Tripathi S M, Bock W J, Mikulic P, Chinnappan R, Ng A, Tolba M and Zourob M, 2012. Long period grating based biosensor for the detection of Escherichia coli bacteria. Biosensors and Bioe-lectronics. 35: 308–312. doi:10.1016/j.bios.2012.03.006
  14. Fang Y and Ramasamy R P, 2015. Current and prospective methods for plant disease detection. Biosensors. 5: 537–561. doi:10.3390/bios5030537
  15. Poole N F and Arnaudin M E, 2014. The role of fungicides for effective disease management in cereal crops. Canadian J. Plant Pathol. 36: 1–11. doi:10.1080/07060661.2013.870230
  16. Druzhinina I S, Komoń-Zelazowska M, Kredics L, Hatvani L, Antal Z, Belayneh T and Kubicek C P, 2008. Alternative reproductive strategies of Hypocrea orientalis and genetically close but clonal Trichoderma Longibrachiatum, both capable of causing invasive mycoses of humans. Microbiol-ogy. 154: 3447–3459. doi:10.1099/mic.0.2008/021196-0
  17. Miller J D, Rand T G and Jarvis B B, 2003. Stachybotrys chartarum: cause of human disease or media darling? Medical Mycology. 41: 271–291. doi:10.1080/1369378031000137350
  18. Hatvani L, Antal Z, Manczinger L, Szekeres A, Druzhinina I S, Kubicek C P, Nagy A, Nagy E, Vágvölgyi C and Kredics L, 2007. Green mold diseases of Agaricus and Pleurotus spp. are caused by related but phylogenetically different Trichoderma species. Phytopathology. 97: 532–537. doi:10.1094/PHYTO-97-4-0532
  19. Schuster A and Schmoll M, 2010. Biology and biotechnology of Trichoderma. Appl. Microbiology and Diotechnology. 87: 787–799. doi:10.1007/s00253-010-2632-1
  20. Prakash O, Dixit S K and Bhatnagar R, 2002. On the role of the coherence width and its evolution in a short-pulse fundamental beam in second harmonic generation from beta-barium borate. IEEE J. Quant. Electron. 38: 603–613. doi:10.1109/JQE.2002.1005410
(c) Ukrainian Journal of Physical Optics