Home
page
Other articles
in this issue |
Detection of fungi
using a long-period fibre grating
1Gambhir M., 1Gupta S.,
2John
P., 3Mahakud R., 3Kumar J. and 3Prakash
O.
1ECED,
SVNIT, Surat, India
2Department of Plant Pathology, Navsari Agriculture
University, Navsari, India
3Laser System Engineering Division, RRCAT,
Indore, India
Download this
article
Abstract. We present the first-time application of long-period
fibre gratings written with a copper-vapour laser for detection of fungi
in plants. The long-period gratings are used for identification of Trichoderma
fungi species. A significance of our work lies in the facts that these
bioagents protect plant roots against pathogens that can cause serious
fungal diseases, resulting in great crop yield losses and, moreover, these
can cause a lethal effect on human beings. We study such Trichoderma
species as T. Harzianum, T. Viride and T. Longibacterium.
They reveal characteristic attenuation peaks respectively at the resonance
wavelengths 1524, 1520 and 1522 nm. The corresponding transmission dips
change from 63.75 dB for the case of water to 54.85, 57.34 and 59.76 dB
for the cases of water solutions of T. Harzianum, T. Viride
and T. Longibacterium, respectively.
Keywords: long-period fibre gratings, surrounding
refractive index, linearly polarized modes
PACS: 07.07.Df, 42.81.Pa
UDC: 535.8
Ukr. J. Phys. Opt.
18 77-82
doi: 10.3116/16091833/18/2/77/2017
Received: 04.12.2016
Анотація. Вперше продемонстровано
можливість застосування довгоперіодичних
волоконних дифракційних ґраток, записаних
за допомогою лазера на парах міді, для виявлення
грибів у рослинах. ЦІ довгоперіодичні ґратки
використано для ідентифікації видів грибів
Trichoderma. Значимість наших об’єктів полягає
в тому, що ці біоагенти захищають коріння
рослин від патогенних мікроорганізмів,
які можуть викликати серйозні грибкові
захворювання, що призводять до значних
втрат врожайності і, крім того, ці об’єкти
можуть мати летальний вплив на людину.
Такі види Trichoderma як Т. Harzianum, Т. Viride і Т. Longibacterium
виявляють характерні піки загасання відповідно
на резонансних довжинах хвиль 1524, 1520 і 1522
нм. Відповідні провали в оптичному пропусканні
зменшуються від 63,75 дБ для води до 54,85, 57,34
і 59,76 дБ для водних розчинів Т.Harzianum, Т. Viride
і Т. Longibacterium, відповідно. |
|
REFERENCES
-
Vengsarkar A M, Lemaire P J, Judkins J B, Bhatia V, Erdogan T and Sipe
J E, 1996. Long-period fiber gratings as band-rejection filters. J. Lightwave
Technol. 14: 58–65. doi:10.1109/50.476137
-
Bhatia V, 1999. Applications of long-period gratings to single and multi-parameter
sensing. Opt. Express. 4: 457–466. doi:10.1364/OE.4.000457
-
Wang Y P, Xiao L, Wang D N and Jin W, 2006. Highly sensitive long-period
fiber-grating strain sensor with low temperature sensitivity. Opt. Lett.
31: 3414–3416. doi:10.1364/OL.31.003414
-
Taghipour A, Rostami A, Bahrami M, Baghban H and Dolatyari M, 2014. Comparative
study between LPFG-and FBG-based bending sensors. Opt. Commun. 312: 99–105.
doi:10.1016/j.optcom.2013.09.020
-
Shu X, Allsop T, Gwandu B, Zhang L and Bennion I, 2001. High-temperature
sensitivity of long-period gratings in B–Ge codoped fiber. IEEE Photon.
Technol. Lett. 13: 818–820. doi:10.1109/68.935814
-
Kher S, Chaubey S, Kishore J and Oak S M, 2013. Detection of fuel adulteration
with high sensitivity using turnaround point long period fiber gratings
in B/Ge doped fibers. IEEE Sensors J. 13: 4482–4486. doi:10.1109/JSEN.2013.2270312
-
Hochreiner H, Cada M and Wentzell P D, 2008. Modeling the response of a
long-period fiber grating to ambient refractive index change in chemical
sensing applications. J. Lightwave Technol. 26: 1986–1992. doi:10.1109/JLT.2007.912022
-
Mishra V, Jain S C, Singh N, Poddar G C and Kapur P, 2008. Fuel adulteration
detection using long period fiber grating sensor technology. J. Sci. Industr.
Res. 46: 106–110.
-
Libish T M, Linesh J, Biswas P, Bandyopadhyay S, Dasgupta K and Radhakrishnan
P, 2010. Fiber optic long period grating based sensor for coconut oil adulteration
detection. Sensors & Transducers. 114: 102–111.
-
Libish T M, Linesh J, Bobby M C, Biswas P, Bandypadhyay S, Dasgupta
K and Radhakrshnan P, 2011. Fiber optic sensor for the adulteration detection
of edible oils. Optoelectron. Adv. Mat. - Rapid Commun. 5: 68–72.
-
Kher S, Chaubey S, Kashyap R and Oak S M, 2012. Turnaround-point long-period
fiber gratings (TAP-LPGs) as high-radiation-dose sensors. IEEE Photon.
Technol. Letters 24: 742–744. doi:10.1109/LPT.2012.2187637
-
Chiavaioli F, Biswas P, Trono C, Bandyopadhyay S, Giannetti A, Tombelli
S, Basumallick N, Dasgupta K and Baldini F, 2014. Towards sensitive label-free
immunosensing by means of turn-around point long period fiber gratings.
Biosensors and Bioelectronics. 60: 305–310. doi:10.1016/j.bios.2014.04.042
-
Tripathi S M, Bock W J, Mikulic P, Chinnappan R, Ng A, Tolba M and Zourob
M, 2012. Long period grating based biosensor for the detection of Escherichia
coli bacteria. Biosensors and Bioe-lectronics. 35: 308–312. doi:10.1016/j.bios.2012.03.006
-
Fang Y and Ramasamy R P, 2015. Current and prospective methods for plant
disease detection. Biosensors. 5: 537–561. doi:10.3390/bios5030537
-
Poole N F and Arnaudin M E, 2014. The role of fungicides for effective
disease management in cereal crops. Canadian J. Plant Pathol. 36: 1–11.
doi:10.1080/07060661.2013.870230
-
Druzhinina I S, Komoń-Zelazowska M, Kredics L, Hatvani L, Antal Z, Belayneh
T and Kubicek C P, 2008. Alternative reproductive strategies of Hypocrea
orientalis and genetically close but clonal Trichoderma Longibrachiatum,
both capable of causing invasive mycoses of humans. Microbiol-ogy. 154:
3447–3459. doi:10.1099/mic.0.2008/021196-0
-
Miller J D, Rand T G and Jarvis B B, 2003. Stachybotrys chartarum: cause
of human disease or media darling? Medical Mycology. 41: 271–291. doi:10.1080/1369378031000137350
-
Hatvani L, Antal Z, Manczinger L, Szekeres A, Druzhinina I S, Kubicek C
P, Nagy A, Nagy E, Vágvölgyi C and Kredics L, 2007. Green mold diseases
of Agaricus and Pleurotus spp. are caused by related but phylogenetically
different Trichoderma species. Phytopathology. 97: 532–537. doi:10.1094/PHYTO-97-4-0532
-
Schuster A and Schmoll M, 2010. Biology and biotechnology of Trichoderma.
Appl. Microbiology and Diotechnology. 87: 787–799. doi:10.1007/s00253-010-2632-1
-
Prakash O, Dixit S K and Bhatnagar R, 2002. On the role of the coherence
width and its evolution in a short-pulse fundamental beam in second harmonic
generation from beta-barium borate. IEEE J. Quant. Electron. 38: 603–613.
doi:10.1109/JQE.2002.1005410
(c) Ukrainian Journal
of Physical Optics |