Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Piezooptic coefficients and acoustooptic efficiency of TGS crystals

1Mytsyk B., 2Shut V., 1Demyanyshyn N., 2Mozzharov S., 3Erba A., 4Kalynyak B., 5Mys O. and  5Vlokh R. 

1 Karpenko Physico-Mechanical Institute, 5 Naukova Street, 79601 Lviv, Ukraine
2 Institute of Technical Acoustics of NAS of Belarus, 13 Lyudnykov Avenue, 220023 Vitebsk, Belarus
3 Universita di Torino, Via Giuria 5, 10125 Torino, Italy
4 Pidstryhach Institute for the Applied Problems of Mechanics and Mathematics, 3b  Naukova Street, 79060, Lviv, Ukraine 
5 Vlokh Institute of Physical Optics, 23 Dragomanov Street, 79005 Lviv, Ukraine 

Download this article

Abstract. We have determined ten piezooptic tensor components for monoclinic triglycine sulfate crystals, using an interferometric method. Acoustooptic figure of merit has been calculated for the case of isotropic acoustooptic interactions with a quasi-longitudinal acoustic wave.

Keywords: piezooptic tensor, mechanical stresses, monoclinic crystals, interferometric method

PACS: 78.20.Hp
UDC: 535.551
Ukr. J. Phys. Opt. 18 46-54
doi: 10.3116/16091833/18/1/46/2017
Received: 17.01.2017

Анотація. Інтерферометричним методом експериментально визначено десять компонент п’єзооптичного тензора для кристалів тригліцинсульфату. Розраховано коефіцієнт акустооптичної якості цих кристалів для ізотропної акустооптичної взаємодії з квазі-поздовжною акустичною хвилею. 

REFERENCES
  1. Mytsyk B, 2003. Methods for the studies of the piezo-optical effect in crystals and the analysis of experimental data. I. Methodology for the studies of piezo-optical effect. Ukr. J. Phys. Opt. 4: 1–26. doi:10.3116/16091833/4/1/1/2003
  2. Narasimhamurty T S, Photo-elastic and electro-optic properties of crystals. N Y: Plenum Press, 1981. https://doi.org/10.1007/978-1-4757-0025-1
  3. Mytsyk B G, Photoelasticity of anisotropic materials. Lviv: Liga-Press, 2012.
  4. Gorbach S S, Pakhnev A V and Shaskolskaya M P, 1974. Photoelastic properties of crystals. Rev. Electron. Tech., Ser. Mater. 16(256): 1–86.
  5. Feldman A, Horowitz D, Waxler R M and Dodge M J, Optical materials characterization. National Bur. Stand. (USA): Tech. Note 993, 1979.
  6. Zheludev I S, Physics of crystalline dielectrics. Moscow: Nauka, 1968.
  7. Hilczer B and Balanicka S, 1973. Influence of defects on the optical behaviour of TGS crystals near the fundamental absorption edge. Phys. stat. sol. (a). 19: 717–723. doi:10.1002/pssa.2210190238
  8. Romanyuk N A, Mytsyk B G and Kulyk L N, 1986. Piezo-change of the optical properties of triglycine sulfate crystals. Ukr. Fiz. Zhurn. 31: 354–359.
  9. Mytsyk B G and Romanyuk N A, 1983. The nature of temperature anomalies of the piezooptical coefficient in crystals of the triglycine sulfate group. Ukr. Fiz. Zhurn. 28: 538–542.
  10. Mytsyk B, Demyanyshyn N, Martynyuk-Lototska I and Vlokh R, 2011. Piezo-optic, photo-elastic and acousto-optic properties of SrB4O7 crystals. Appl. Opt. 50: 3889–3895. doi:10.1364/AO.50.003889
  11. Vasylkiv Yu, Kvasnyuk O, Krupych O, Mys O, Maksymuk O and Vlokh R, 2009. Reconstruction of 3D stress fields basing on piezooptic experiment, Ukr. J. Phys. Opt. 10: 22–37. doi:10.3116/16091833/10/1/22/2009
  12. Strukov B A, Davtyan A V, Minaeva K A and Gornayev A A, 1983. Acoustooptic properties of TGS crystals. Izv. AN SSSR, Ser. Fiz. 47: 611–615.
  13. Mys O, Krupych O and Vlokh R, 2016. Anisotropy of an acousto-optic figure of merit for NaBi(MoO4)2 crystals. Appl. Opt. 55: 7941–7955. doi:10.1364/AO.55.007941
  14. Mytsyk B G, Andrushchak A S, Demyanyshyn N M, Kost' Y P, Kityk A V, Mandracci P and Schranz W, 2009. Piezo-optic coefficients of MgO-doped LiNbO3 crystals. Appl. Opt. 48: 1904–1911. doi:10.1364/AO.48.001904
  15. Mytsyk B G, Andrushchak A S and Kost' Y P, 2012. Static photoelasticity of gallium phosphide crystals. Crystallogr. Rep. 57: 124–130. doi:10.1134/S1063774512010075
  16. Konstantinova V P, Silvestrova I M and Aleksandrov K S, 1959. Obtaining of triglycine sulphate crystals and their physical properties. Kristallogr. 4: 69–73.
  17. Wood E A and Holden A N, 1957. Monoclinic glycine sulphate: crystallographic data. Acta Cryst. 10: 145–146. doi:10.1107/S0365110X57000481
  18. Romanyuk М О, Kostetskyi O M and Viblyi I F, 1976. Dispersion and temperature dependence of refractive indices of pure triglycine sulphate crystals. Ukr. Fiz. Zhurn. 21: 207–209.
  19. Krupych O, Savaryn 1983 and Vlokh R, 2014. Precise determination of full matrix of piezo-optic coefficients with a four-point bending technique: the example of lithium niobate crystals. Appl. Opt. 53: B1–B7. doi:10.1364/AO.53.0000B1
  20. Andrushchak A S, Adamiv V T, Krupych O M, Martynyuk-Lototska I Yu, Burak Ya V and Vlokh R O, 2000. Anisotropy of piezo- and elastooptical effect in β-BaB2O4 crystals. Ferro-electrics. 238: 299–305. doi:10.1080/00150190008008796
  21. Shaskolskaya M P. Acoustic crystals. Moscow: Nauka, 1982.
  22. Erba A and Dovesi R, 2013. Photoelasticity of crystals from theoretical simulations. Phys. Rev. B. 88: 045121/1–8. doi:10.1103/PhysRevB.88.045121
  23. Erba A, Ruggiero M T, Korter T M and Dovesi R, 2015. Piezo-optic tensor of crystals from quantum-mechanical calculations. J. Chem. Phys. 143: 144504/1–8. doi:10.1063/1.4932973
  24. Mytsyk B, Erba A, Demyanyshyn N and Sakharuk O, 2016. Piezo-optic and elasto-optic effects in lead molibdate crystals. Opt. Mater. 62: 632-638. doi:10.1016/j.optmat.2016.11.001
  25. Yano T and Watanabe A, 1974. Acousto-optic figure of merit of TeO2 for circularly polarized light. J. Appl. Phys. 45: 1243–1245. doi:10.1063/1.1663396
  26. Singh N B and Duval W M B, 1991. Growth kinetics of physical vapour transport processes: Crystal growth of opto-electronic material mercurous chloride. NASA Technical Memorandum. 103788.
  27. Martynyuk-Lototska I Yu, Mys O G, Grabar A A, Stoika I M, Vysochanskii Yu M and Vlokh R O, 2008. Highly efficient acousto-optic diffraction in Sn2P2S6 crystals. Appl. Opt. 47: 52–55. doi:10.1364/AO.47.000052
  28. Gottlieb M, Isaacs T J, Feichtner J D and Roland G W, 1974. Acousto-optic properties of some chalcogenide crystals. J. Appl. Phys. 45: 5145–5151. doi:10.1063/1.1663207
  29. Vlokh R and Martynyuk-Lototska I, 2009. Ferroelastic crystals as effective acoustooptic materials. Ukr. J. Phys. Opt. 10: 89–99. doi:10.3116/16091833/10/2/89/2009
  30. Krupych O, Mys O, Kryvyy T, Adamiv V, Burak Y and Vlokh R, 2017. Photoelastic properties of lithium tetraborate crystals. Appl. Opt. 56: 10457–10462.
  31. Mys O, Kryvyy T, Krupych O and Vlokh R, 2017. Anisotropy of acoustooptic figure of merit for lithium tetraborate crystals. J. Mod. Opt. (to be published).
  32. Demyanyshyn N M, Mytsyk B G and Sakharuk O M, 2014. Elasto-optic effect anisotropy in strontium borate crystals. Appl. Opt. 53: 1620–1628. doi:10.1364/AO.53.001620
  33. Mytsyk B G and Demyanyshyn N M, 2006. Piezo-optic surfaces of lithium niobate crystals. Crystallogr. Rep. 51: 653–660. doi:10.1134/S1063774506040195
  34. Demyanyshyn N M, Mytsyk B G, Kost' Ya P, Solskii I M and Sakharuk O M, 2015. Elasto-optic effect anisotropy in calcium tungstate crystals. Appl. Opt. 54: 2347-2355. doi:10.1364/AO.54.002347
(c) Ukrainian Journal of Physical Optics