Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Adaptive centre extraction method for structured light stripes

1,2Zhixin Hu, 1Hongtao Zhu, 3Ming Hu and 4Yong Ma

1School of Mechanical and Electrical Engineering, Nanchang University, Nanchang, Jiangxi Province, China
2School of Mechanical and Vehicular Engineering, Nanchang Institute of Science and Technology, Nanchang, Jiangxi Province, China
3School of Electronic Engineering, Nanchang Institute of Science and Technology, Nanchang, Jiangxi Province, China
4Electronic Information School, Wuhan University, Wuhan, Hubei Province, China

Download this article

Abstract. In the vision systems based on structured light, accurate extracting of centre positions of a light stripe represents one of the key points in solving the whole measurement task. Usually, high radiant illumination and objects with abundant surface textures decrease the detection precision. To address these problems, we suggest an adaptive centre-extraction method. First, it improves the image contrast using a novel adaptive threshold-based power transformation. Second, pixel-level centre points are obtained with our adaptive dual-threshold Canny’s edge detection method. Finally, subpixel-level centre points are extracted using a Hessian matrix for a limited number of pixels. Our experiments prove robustness and practicability of the method, which can cope with complex surface textures of projected objects and high radiant illumination.

Keywords: structured light, radiant illumination, centre extraction, power transform, Hessian matrix

PACS: 42.30.Tz
UDC: 004.932
Ukr. J. Phys. Opt. 18 9-19
doi: 10.3116/16091833/18/1/9/2017
Received: 13.04.2016
After revision: 08.11.2016

Анотація. У системах зору, що працюють у структурованому світлі, одним із ключових моментів у вирішенні задачі вимірювань є точне визначення позицій центра світлої смуги. Надмірна текстурованість поверхні проектованих об’єктів і висока освітленість зазвичай понижують відповідну точність. Для вирішення цих проблем запропоновано адаптивний метод екстракції центра. По-перше, він підвищує контраст зображення за допомогою нового адаптивного степеневого перетворення, заснованого на порозі. По-друге, центральні точки на рівні пікселів отримують за допомогою адаптивного методу Кенні з подвійним порогом для виявлення краю. Нарешті, центральні точки на рівні субпікселів знаходять за допомогою матрицю Гессе для обмеженої кількості пікселів. Наші експерименти довели надійність і практичну виправданість цього методу, який ефективно працює з ускладненими поверхневими текстурами проектованих об’єктів, а також за умов високої освітленості.

REFERENCES
  1. Pérez L, Rodríguez Í, Rodríguez N, Usamentiaga R and García D F, 2016. Robot guidance using machine vision techniques in industrial environments: a comparative review. Sensors. 16: 335. doi:10.3390/s16030335
  2. Cho M and Shin D, 2013. Depth resolution analysis of axially distributed stereo camera systems under fixed constrained resources. J. Opt. Soc. Korea. 17: 500–505. doi:10.3807/JOSK.2013.17.6.500
  3. Son T, Lee J and Jung B, 2013. Contrast enhancement of laser speckle contrast image in deep vasculature by reduction of tissue scattering. J. Opt. Soc. Korea. 17: 86–90. doi:10.3807/JOSK.2013.17.1.086
  4. Tsukada T, Nakano T, Yamamoto S, Matsuo H, Iwata A, 1999. A method for measuring the 3-D shape of objects with non-uniformly reflective surfaces. Electric. Engineering in Japan. 126: 40–47. doi:10.1002/(SICI)1520-6416(19990130)126:2<40::AID-EEJ5>3.0.CO;2-X
  5. Larsson S and Kjellander J A P, 2006. Motion control and data capturing for laser scanning with an industrial robot. Robot. Autonom. Syst. 54: 453–460. doi:10.1016/j.robot.2006.02.002
  6. Liu K, Wang Y C, Lau D L, Hao Q and Hassebrook L G, 2010. Dual-frequency pattern scheme for high-speed 3-D shape measurement. Opt. Express. 18: 5229–5244. doi:10.1364/OE.18.005229
  7. Jun Cheng, Shiguang Zheng and Xinyu Wu, 2013. Structured light-based shape measurement system. Signal Process. 93: 1435–1444. doi:10.1016/j.sigpro.2012.05.004
  8. Leng H, Xu C, Feng Z and Xiao D, 2008. A method for extracting the center of ring-structured-light stripe. Second International Symposium on Intelligent Inform. Technol. Appl. IITA'08. 2: 906–910. doi:10.1109/iita.2008.161
  9. Nobuyuki Otsu, 1979. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man. Cyber. 9: 62–66. doi:10.1109/TSMC.1979.4310076
  10. Milanfar P, 2013. A tour of modern image filtering: New insights and methods, both practical and theoretical. IEEE Sign. Process. Mag. 30: 106–128. doi:10.1109/MSP.2011.2179329
  11. Yeong-Taeg Kim, 1997. Contrast enhancement using brightness preserving bi-histogram eualization. IEEE Trans. Consumer Electron. 43: 1–8. doi:10.1109/30.580378
  12. Weihua Wang, Songlin Liu, Ming Wan, Yan He and Zengping Chen, 2015. A real-time target detection algorithm based on combination of intensity and edge for infrared search system. Proc. SPIE. 9812, MIPPR 2015: Automatic Target Recogn. and Navig. 98120S.
  13. Canny J, 1986. A computational approach to edge detection. IEEE Trans. Pattern Analysis and Machine Intelligence. 8: 679–698. doi:10.1109/TPAMI.1986.4767851
  14. Perona P and Malik J, 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Analysis and Machine Intelligence. 12: 629–639. doi:10.1109/34.56205
  15. Harris C and Stephens M, 1988. A combined corner and edge detector. In: Proc. Alvey Vision Conf. 147–151. doi:10.5244/c.2.23
  16. van de Weijer J, Gevers T and Geusebroek J M, 2005. Edge and corner detection by potometric quasi-invariants. IEEE Trans. Pattern Analysis and Machine Intellig. 27: 625–630. doi:10.1109/TPAMI.2005.75
  17. Tsai L W, Hsieh J W and Fan K C, 2007. Vehicle detection using normalized color and edge map. IEEE Trans. Image Process. 16: 850–864. doi:10.1109/TIP.2007.891147
  18. Chaudhuri S, Chatterjee S, Katz N, Nelson M and Goldbaum M, 1989. Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans. Med. Imaging. 8: 263–269. doi:10.1109/42.34715
  19. Djemel Ziou, 1991. Line detection using an optimal IIR filter. Pattern Recogn. 24: 465–478. doi:10.1016/0031-3203(91)90014-V
  20. Laligant O and Truchetet F, 2010. A nonlinear derivative scheme applied to edge detection. IEEE Trans. Pattern Analys. and Mach. Intelligence. 32: 242–257. doi:10.1109/TPAMI.2008.282
  21. Ke Li, Cuifang Kuang and Xu Liu, 2013. Small angular displacement measurement based on an autocollimator and a common-path compensation principle. Rev. Sci. Instrum. 84: 015108. doi:10.1063/1.4773004
  22. Luengo-Oroz M A, Faure E and Angulo J, 2010. Robust iris segmentation on uncalibrated noisy images using mathematical morphology. Image Vision Comp. 28: 278–284. doi:10.1016/j.imavis.2009.04.018
  23. Guosheng Xu, 2009. Sub-pixel edge detection based on curve fitting. In: Proc. Second Intern. Conf. on Inform. Comp. Sci. IEEE, 373–375. doi:10.1109/icic.2009.205
  24. Goshtasby A and Shyu Hailun, 1995. Edge detection by curve fitting. Image Vision Comput. 13: 169–177. doi:10.1016/0262-8856(95)90837-X
  25. Steger C, 1998. An unbiased detector of curvilinear structures. IEEE Trans. Pattern Analysis and Machine Intelligence. 20: 113–125. doi:10.1109/34.659930
  26. Li Qi, Yixin Zhang, Xuping Zhang, Shun Wang and Fei Xie, 2013. Statistical behavior analysis and precision optimization for the laser stripe center detector based on Steger's method. Opt. E-press. 21: 13442–13449. doi:10.1364/OE.21.013442
  27. Lemaitre C, Perdoch M, Rahmoune A, Matas J and Miteran J, 2011. Detection and matching of curvilinear structures. Pattern Recogn. 44: 1514–1527. doi:10.1016/j.patcog.2011.01.005
  28. Linglong Lin, Yuntao Song, Yang Yang, Hansheng Feng, Yong Cheng, Hongtao Pan 2015. Computer vision system R&D for EAST articulated maintenance arm robot. Fusion Engineering and Design 100: 254–259. doi:10.1016/j.fusengdes.2015.06.017
  29. Deriche R, 1987. Using Canny's criteria to derive a recursively implemented optimal edge d-tector. Int. J. Comp. Vision. 1: 167–187. doi:10.1007/BF00123164
(c) Ukrainian Journal of Physical Optics