Home
page
Other articles
in this issue |
Adaptive centre extraction
method for structured light stripes
1,2Zhixin Hu, 1Hongtao
Zhu, 3Ming Hu and 4Yong Ma
1School of Mechanical and Electrical Engineering,
Nanchang University, Nanchang, Jiangxi Province, China
2School of Mechanical and Vehicular Engineering,
Nanchang Institute of Science and Technology, Nanchang, Jiangxi Province,
China
3School of Electronic Engineering, Nanchang
Institute of Science and Technology, Nanchang, Jiangxi Province, China
4Electronic Information School, Wuhan University,
Wuhan, Hubei Province, China
Download this
article
Abstract. In the vision systems based on structured light, accurate
extracting of centre positions of a light stripe represents one of the
key points in solving the whole measurement task. Usually, high radiant
illumination and objects with abundant surface textures decrease the detection
precision. To address these problems, we suggest an adaptive centre-extraction
method. First, it improves the image contrast using a novel adaptive threshold-based
power transformation. Second, pixel-level centre points are obtained with
our adaptive dual-threshold Canny’s edge detection method. Finally, subpixel-level
centre points are extracted using a Hessian matrix for a limited number
of pixels. Our experiments prove robustness and practicability of the method,
which can cope with complex surface textures of projected objects and high
radiant illumination.
Keywords: structured light, radiant illumination,
centre extraction, power transform, Hessian matrix
PACS: 42.30.Tz
UDC: 004.932
Ukr. J. Phys. Opt.
18 9-19
doi: 10.3116/16091833/18/1/9/2017
Received: 13.04.2016
After revision: 08.11.2016
Анотація. У системах зору, що працюють
у структурованому світлі, одним із ключових
моментів у вирішенні задачі вимірювань
є точне визначення позицій центра світлої
смуги. Надмірна текстурованість поверхні
проектованих об’єктів і висока освітленість
зазвичай понижують відповідну точність.
Для вирішення цих проблем запропоновано
адаптивний метод екстракції центра. По-перше,
він підвищує контраст зображення за допомогою
нового адаптивного степеневого перетворення,
заснованого на порозі. По-друге, центральні
точки на рівні пікселів отримують за допомогою
адаптивного методу Кенні з подвійним порогом
для виявлення краю. Нарешті, центральні
точки на рівні субпікселів знаходять за
допомогою матрицю Гессе для обмеженої
кількості пікселів. Наші експерименти
довели надійність і практичну виправданість
цього методу, який ефективно працює з ускладненими
поверхневими текстурами проектованих
об’єктів, а також за умов високої освітленості. |
|
REFERENCES
-
Pérez L, Rodríguez Í, Rodríguez N, Usamentiaga R and García D F, 2016.
Robot guidance using machine vision techniques in industrial environments:
a comparative review. Sensors. 16: 335. doi:10.3390/s16030335
-
Cho M and Shin D, 2013. Depth resolution analysis of axially distributed
stereo camera systems under fixed constrained resources. J. Opt. Soc. Korea.
17: 500–505. doi:10.3807/JOSK.2013.17.6.500
-
Son T, Lee J and Jung B, 2013. Contrast enhancement of laser speckle contrast
image in deep vasculature by reduction of tissue scattering. J. Opt. Soc.
Korea. 17: 86–90. doi:10.3807/JOSK.2013.17.1.086
-
Tsukada T, Nakano T, Yamamoto S, Matsuo H, Iwata A, 1999. A method for
measuring the 3-D shape of objects with non-uniformly reflective surfaces.
Electric. Engineering in Japan. 126: 40–47. doi:10.1002/(SICI)1520-6416(19990130)126:2<40::AID-EEJ5>3.0.CO;2-X
-
Larsson S and Kjellander J A P, 2006. Motion control and data capturing
for laser scanning with an industrial robot. Robot. Autonom. Syst. 54:
453–460. doi:10.1016/j.robot.2006.02.002
-
Liu K, Wang Y C, Lau D L, Hao Q and Hassebrook L G, 2010. Dual-frequency
pattern scheme for high-speed 3-D shape measurement. Opt. Express. 18:
5229–5244. doi:10.1364/OE.18.005229
-
Jun Cheng, Shiguang Zheng and Xinyu Wu, 2013. Structured light-based shape
measurement system. Signal Process. 93: 1435–1444. doi:10.1016/j.sigpro.2012.05.004
-
Leng H, Xu C, Feng Z and Xiao D, 2008. A method for extracting the center
of ring-structured-light stripe. Second International Symposium on Intelligent
Inform. Technol. Appl. IITA'08. 2: 906–910. doi:10.1109/iita.2008.161
-
Nobuyuki Otsu, 1979. A threshold selection method from gray-level histograms.
IEEE Trans. Syst. Man. Cyber. 9: 62–66. doi:10.1109/TSMC.1979.4310076
-
Milanfar P, 2013. A tour of modern image filtering: New insights and methods,
both practical and theoretical. IEEE Sign. Process. Mag. 30: 106–128.
doi:10.1109/MSP.2011.2179329
-
Yeong-Taeg Kim, 1997. Contrast enhancement using brightness preserving
bi-histogram eualization. IEEE Trans. Consumer Electron. 43: 1–8. doi:10.1109/30.580378
-
Weihua Wang, Songlin Liu, Ming Wan, Yan He and Zengping Chen, 2015. A real-time
target detection algorithm based on combination of intensity and edge for
infrared search system. Proc. SPIE. 9812, MIPPR 2015: Automatic Target
Recogn. and Navig. 98120S.
-
Canny J, 1986. A computational approach to edge detection. IEEE Trans.
Pattern Analysis and Machine Intelligence. 8: 679–698. doi:10.1109/TPAMI.1986.4767851
-
Perona P and Malik J, 1990. Scale-space and edge detection using anisotropic
diffusion. IEEE Trans. Pattern Analysis and Machine Intelligence. 12: 629–639.
doi:10.1109/34.56205
-
Harris C and Stephens M, 1988. A combined corner and edge detector. In:
Proc. Alvey Vision Conf. 147–151. doi:10.5244/c.2.23
-
van de Weijer J, Gevers T and Geusebroek J M, 2005. Edge and corner detection
by potometric quasi-invariants. IEEE Trans. Pattern Analysis and Machine
Intellig. 27: 625–630. doi:10.1109/TPAMI.2005.75
-
Tsai L W, Hsieh J W and Fan K C, 2007. Vehicle detection using normalized
color and edge map. IEEE Trans. Image Process. 16: 850–864. doi:10.1109/TIP.2007.891147
-
Chaudhuri S, Chatterjee S, Katz N, Nelson M and Goldbaum M, 1989. Detection
of blood vessels in retinal images using two-dimensional matched filters.
IEEE Trans. Med. Imaging. 8: 263–269. doi:10.1109/42.34715
-
Djemel Ziou, 1991. Line detection using an optimal IIR filter. Pattern
Recogn. 24: 465–478. doi:10.1016/0031-3203(91)90014-V
-
Laligant O and Truchetet F, 2010. A nonlinear derivative scheme applied
to edge detection. IEEE Trans. Pattern Analys. and Mach. Intelligence.
32: 242–257. doi:10.1109/TPAMI.2008.282
-
Ke Li, Cuifang Kuang and Xu Liu, 2013. Small angular displacement measurement
based on an autocollimator and a common-path compensation principle. Rev.
Sci. Instrum. 84: 015108. doi:10.1063/1.4773004
-
Luengo-Oroz M A, Faure E and Angulo J, 2010. Robust iris segmentation on
uncalibrated noisy images using mathematical morphology. Image Vision Comp.
28: 278–284. doi:10.1016/j.imavis.2009.04.018
-
Guosheng Xu, 2009. Sub-pixel edge detection based on curve fitting. In:
Proc. Second Intern. Conf. on Inform. Comp. Sci. IEEE, 373–375. doi:10.1109/icic.2009.205
-
Goshtasby A and Shyu Hailun, 1995. Edge detection by curve fitting. Image
Vision Comput. 13: 169–177. doi:10.1016/0262-8856(95)90837-X
-
Steger C, 1998. An unbiased detector of curvilinear structures. IEEE Trans.
Pattern Analysis and Machine Intelligence. 20: 113–125. doi:10.1109/34.659930
-
Li Qi, Yixin Zhang, Xuping Zhang, Shun Wang and Fei Xie, 2013. Statistical
behavior analysis and precision optimization for the laser stripe center
detector based on Steger's method. Opt. E-press. 21: 13442–13449. doi:10.1364/OE.21.013442
-
Lemaitre C, Perdoch M, Rahmoune A, Matas J and Miteran J, 2011. Detection
and matching of curvilinear structures. Pattern Recogn. 44: 1514–1527.
doi:10.1016/j.patcog.2011.01.005
-
Linglong Lin, Yuntao Song, Yang Yang, Hansheng Feng, Yong Cheng, Hongtao
Pan 2015. Computer vision system R&D for EAST articulated maintenance
arm robot. Fusion Engineering and Design 100: 254–259. doi:10.1016/j.fusengdes.2015.06.017
-
Deriche R, 1987. Using Canny's criteria to derive a recursively implemented
optimal edge d-tector. Int. J. Comp. Vision. 1: 167–187. doi:10.1007/BF00123164
(c) Ukrainian Journal
of Physical Optics |