Home
page
Other articles
in this issue |
The anisotropy of
acoustooptic figure of merit for the collinear diffraction in LiNbO3 crystals
Kryvyy T., Mys O., Krupych O. and Vlokh R.
Vlokh Institute of Physical Optics, 23 Dragomanov Street,
79005 Lviv, Ukraine
Download this
article
Abstract. We have shown that the maximal acoustooptic figure
of merit for the collinear type of acoustooptic diffraction in LiNbO3
crystals
is peculiar for the interaction with acoustic wave QT1
polarized
parallel to the principal Z axis. All the interacting waves in this case
propagate in the principal plane XY along the direction inclined by 50o
or 130o deg with respect to the X axis. The acoustooptic figure
of merit for this interaction type is equal to 10.07*10–15
s3/kg.
Keywords: collinear acoustooptic diffraction,
lithium niobate crystals, acoustooptic figure of merit, anisotropy
PACS: 43.35.Sx, 42.70.Mp
UDC: 535.012.2+535.42+534.321.9
Ukr. J. Phys. Opt.
17 176-187
doi: 10.3116/16091833/17/4/176/2016
Received: 13.10.2016
Анотація. Показано, що максимальне
значення коефіцієнта акустооптичної якості
для колінеарної акустооптичної дифракції
в кристалах ніобату літію притаманне взаємодії
з акустичною хвилею QT1, поляризованою
паралельно до головної осі Z. Тоді всі взаємодіючі
хвилі поширюються в головній площині XY
у напрямках, що відхиляються від осі X на
кути 50o і 130o град. Відповідне
значення коефіцієнта акустооптичної якості
складає 10.07*10–15 с3/кг.
|
|
REFERENCES
-
Balakshii V I, Parydin V N and Chirkov L E, Physical fundamentals of acoustooptics.
Moscow: Radio i Svyaz (1985).
-
Magdich L N and Molchanov V Ya, Acoustooptic devices and their application.
New York: Gordon and Breach Science Publishing (1989).
-
Morasca S, Scarano D and Schmid S, 1997. Application of LiNbO3. Acoustooptic
tunable switches and filters in WDM transmission networks at high bit rates.
In: Book of photonic networks, ed. by G Prati, Part 3. Advances in Optical
Communications (pp. 458–472).
-
Nakazawa T, Taniguchi S and Seino M, 1999. Ti:LiNbO3 acousto-optic tunable
filter (AOTF). FUJITSU Sci. Techn. J. 35: 107–112.
-
Fujii Y and Hayashi H, 1977. Acousto-optic tunable filter using LiNbO3
crystals. Proc. SPIE. 99: 110–115. http://dx.doi.org/10.1117/12.955312
-
Yudistira D, Janner D, Benchabane S and Pruneri V, 2009. Integrated acousto-optic
polarization converter in a ZX-cut LiNbO3 waveguide superlattice. Opt.
Lett. 34: 3205–3207. http://dx.doi.org/10.1364/OL.34.003205
-
Smith T and Korpel A, 1965. Measurement of light-sound interaction efficiencies
in solids. IEEE J. Quant. Electron. 1: 283–284. http://dx.doi.org/10.1109/JQE.1965.1072224
-
Kusters J A, Wilson D A and Hammond D L, 1974.Optimum crystal orientation
for acoustically tuned optical fil-ters. J. Opt. Soc. Amer. 64: 434–440.
http://dx.doi.org/10.1364/JOSA.64.000434
-
Krupych O, Savaryn V and Vlokh R, 2014. Precise determination of full matrix
of piezo-optic coefficients with a four-point bending technique: the example
of lithium niobate crystals. Appl. Opt. 53: B1–B7. http://dx.doi.org/10.1364/AO.53.0000B1
-
Binh L N and Livingstone J, 1980. Optimisation of a collinear acoustooptic
TEm-TEn mode convertor LiNbO3. IEE Proc. (H - Microwaves, Optics and Antennas).
127: 323–329. http://dx.doi.org/10.1049/ip-h-1.1980.0068
-
Petrov D V and Čtyroký J, 1985. Optimal parameters of single-mode LiNbO3:Ti
waveguides for collinear acousto-optic Interaction. Sov. J. Quant. Electron.
15: 58–60. http://dx.doi.org/10.1070/QE1985v015n01ABEH005848
-
Hinkov I and Hinkov V, 1993. Acoustooptic collinear TE-TM mode conversion
in a two-layer Ti-indiffused and proton-exchanged waveguide structure in
LiNbO3. Opt. Quant. Electon. 25: 195–200. http://dx.doi.org/10.1007/BF00420765
-
Palma F and Schirone L, 1986. Acoustooptic interaction efficiency in Ti:LiNbO3
waveguide collinear Bragg dif-fraction cell. J. Appl. Phys. 60: 3720–3723.
http://dx.doi.org/10.1063/1.337581
-
S. E. Harris and R. W. Wallace, 1969. Acousto-optic tunable filter. J.
Opt. Soc. Amer. 59: 744–747. http://dx.doi.org/10.1364/JOSA.59.000744
-
Mys O, Kostyrko M and Vlokh R, 2016. The anisotropy of acousto-optic figure
of merit for LiNbO3 crystals: Ani-sotropic diffraction. Appl. Opt. 55:
2439–2450. http://dx.doi.org/10.1364/AO.55.002439
-
Mys O, Krupych O, Kostyrko M and Vlokh R, 2016. Anisotropy of acousto-optic
figure of merit for LiNbO3 crystals: anisotropic diffraction. Errata. Appl.
Opt. (to be published).
-
Weis R S and Gaylord T K, 1985. Lithium niobate: summary of physical properties
and crystal structure. Appl. Phys. A. 37: 191–203. http://dx.doi.org/10.1007/BF00614817
-
Smith R T and Welsh F S, 1971. Temperature dependence of the elastic, piezoelectric,
and dielectric constants of lithium tantalate and lithium niobate. J. Appl.
Phys. 42: 2219–2230. http://dx.doi.org/10.1063/1.1660528
-
Vlokh R and Martynyuk-Lototska I, 2009. Ferroelastic crystals as effective
acoustooptic materials. Ukr. J. Phys. Opt. 10: 89–99. http://dx.doi.org/10.3116/16091833/10/2/89/2009
-
Martynyuk-Lototska I Y, Mys O G, Grabar A A, Stoika I M, Vysochanskii Y
M and Vlokh R O. Highly efficient acousto-optic diffraction in Sn2P2S6
crystals. Appl. Opt. 2008 47: 52–55.
http://dx.doi.org/10.1364/AO.47.000052
(c) Ukrainian Journal
of Physical Optics |