Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
The anisotropy of acoustooptic figure of merit for the collinear diffraction in LiNbO3 crystals

Kryvyy T., Mys O., Krupych O. and Vlokh R.

Vlokh Institute of Physical Optics, 23 Dragomanov Street, 79005 Lviv, Ukraine

Download this article

Abstract. We have shown that the maximal acoustooptic figure of merit for the collinear type of acoustooptic diffraction in LiNbO3 crystals is peculiar for the interaction with acoustic wave QT1 polarized parallel to the principal Z axis. All the interacting waves in this case propagate in the principal plane XY along the direction inclined by 50o or 130o deg with respect to the X axis. The acoustooptic figure of merit for this interaction type is equal to 10.07*10–15 s3/kg. 

Keywords:  collinear acoustooptic diffraction, lithium niobate crystals, acoustooptic figure of merit, anisotropy

PACS: 43.35.Sx, 42.70.Mp
UDC: 535.012.2+535.42+534.321.9
Ukr. J. Phys. Opt. 17 176-187
doi: 10.3116/16091833/17/4/176/2016
Received: 13.10.2016

Анотація. Показано, що максимальне значення коефіцієнта акустооптичної якості для колінеарної акустооптичної дифракції в кристалах ніобату літію притаманне взаємодії з акустичною хвилею QT1, поляризованою паралельно до головної осі Z. Тоді всі взаємодіючі хвилі поширюються в головній площині XY у напрямках, що відхиляються від осі X на кути 50o і 130o град. Відповідне значення коефіцієнта акустооптичної якості складає 10.07*10–15 с3/кг.
 

REFERENCES
  1. Balakshii V I, Parydin V N and Chirkov L E, Physical fundamentals of acoustooptics. Moscow: Radio i Svyaz (1985).
  2. Magdich L N and Molchanov V Ya, Acoustooptic devices and their application. New York: Gordon and Breach Science Publishing (1989).
  3. Morasca S, Scarano D and Schmid S, 1997. Application of LiNbO3. Acoustooptic tunable switches and filters in WDM transmission networks at high bit rates. In: Book of photonic networks, ed. by G Prati, Part 3. Advances in Optical Communications (pp. 458–472).
  4. Nakazawa T, Taniguchi S and Seino M, 1999. Ti:LiNbO3 acousto-optic tunable filter (AOTF). FUJITSU Sci. Techn. J. 35: 107–112.
  5. Fujii Y and Hayashi H, 1977. Acousto-optic tunable filter using LiNbO3 crystals. Proc. SPIE. 99: 110–115. http://dx.doi.org/10.1117/12.955312
  6. Yudistira D, Janner D, Benchabane S and Pruneri V, 2009. Integrated acousto-optic polarization converter in a ZX-cut LiNbO3 waveguide superlattice. Opt. Lett. 34: 3205–3207. http://dx.doi.org/10.1364/OL.34.003205
  7. Smith T and Korpel A, 1965. Measurement of light-sound interaction efficiencies in solids. IEEE J. Quant. Electron. 1: 283–284. http://dx.doi.org/10.1109/JQE.1965.1072224
  8. Kusters J A, Wilson D A and Hammond D L, 1974.Optimum crystal orientation for acoustically tuned optical fil-ters. J. Opt. Soc. Amer. 64: 434–440. http://dx.doi.org/10.1364/JOSA.64.000434
  9. Krupych O, Savaryn V and Vlokh R, 2014. Precise determination of full matrix of piezo-optic coefficients with a four-point bending technique: the example of lithium niobate crystals. Appl. Opt. 53: B1–B7. http://dx.doi.org/10.1364/AO.53.0000B1
  10. Binh L N and Livingstone J, 1980. Optimisation of a collinear acoustooptic TEm-TEn mode convertor LiNbO3. IEE Proc. (H - Microwaves, Optics and Antennas). 127: 323–329. http://dx.doi.org/10.1049/ip-h-1.1980.0068
  11. Petrov D V and Čtyroký J, 1985. Optimal parameters of single-mode LiNbO3:Ti waveguides for collinear acousto-optic Interaction. Sov. J. Quant. Electron. 15: 58–60. http://dx.doi.org/10.1070/QE1985v015n01ABEH005848
  12. Hinkov I and Hinkov V, 1993. Acoustooptic collinear TE-TM mode conversion in a two-layer Ti-indiffused and proton-exchanged waveguide structure in LiNbO3. Opt. Quant. Electon. 25: 195–200. http://dx.doi.org/10.1007/BF00420765
  13. Palma F and Schirone L, 1986. Acoustooptic interaction efficiency in Ti:LiNbO3 waveguide collinear Bragg dif-fraction cell. J. Appl. Phys. 60: 3720–3723. http://dx.doi.org/10.1063/1.337581
  14. S. E. Harris and R. W. Wallace, 1969. Acousto-optic tunable filter. J. Opt. Soc. Amer. 59: 744–747. http://dx.doi.org/10.1364/JOSA.59.000744
  15. Mys O, Kostyrko M and Vlokh R, 2016. The anisotropy of acousto-optic figure of merit for LiNbO3 crystals: Ani-sotropic diffraction. Appl. Opt. 55: 2439–2450. http://dx.doi.org/10.1364/AO.55.002439
  16. Mys O, Krupych O, Kostyrko M and Vlokh R, 2016. Anisotropy of acousto-optic figure of merit for LiNbO3 crystals: anisotropic diffraction. Errata. Appl. Opt. (to be published).
  17. Weis R S and Gaylord T K, 1985. Lithium niobate: summary of physical properties and crystal structure. Appl. Phys. A. 37: 191–203. http://dx.doi.org/10.1007/BF00614817
  18. Smith R T and Welsh F S, 1971. Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate. J. Appl. Phys. 42: 2219–2230. http://dx.doi.org/10.1063/1.1660528
  19. Vlokh R and Martynyuk-Lototska I, 2009. Ferroelastic crystals as effective acoustooptic materials. Ukr. J. Phys. Opt. 10: 89–99. http://dx.doi.org/10.3116/16091833/10/2/89/2009
  20. Martynyuk-Lototska I Y, Mys O G, Grabar A A, Stoika I M, Vysochanskii Y M and Vlokh R O. Highly efficient acousto-optic diffraction in Sn2P2S6 crystals. Appl. Opt. 2008 47: 52–55. http://dx.doi.org/10.1364/AO.47.000052
(c) Ukrainian Journal of Physical Optics