Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Ultraflat broadband supercontinuum in highly nonlinear Ge11.5As24Se64.5 photonic crystal fibres
1Sandeep Vyas, 2Takasumi Tanabe, 3Manish Tiwari and 4Ghanshyam Singh

1Dept. of ECE, Vivekananda Institute of Technology, Jaipur, India
2Dept. of EEE, Keio University, Kanagawa, Japan
3Dept. of ECE, Manipal University, Jaipur, India
4Dept. of ECE, Malaviya National Institute of Technology, Jaipur, India

Download this article

Abstract. We demonstrate numerically a possible generation of a mid-infrared (1–10 µm) supercontinuum, using highly nonlinear Ge11.5As24Se64.5-based photonic crystal fibres. This ultra-broadband supercontinuum is achieved with a 100 mm long photonic crystal fibre pumped using 85 fs laser pulses at 3.1 µm with the peak power 3 kW. A broad and flat dispersion profile of the Ge11.5As24Se64.5-based photonic crystal fibre combined with a high nonlinearity result in the hyper-broadband supercontinuum. 

Keywords: photonic crystal fibres, chromatic dispersion, effective mode area, supercontinuum generation

PACS: 42.55.Tv
UDC: 535
Ukr. J. Phys. Opt. 17 132-139
doi: 10.3116/16091833/17/3/132/2016

Received: 29.06.2016

Анотація. 
У статті чисельно продемонстровано можливість генерації суперконтинууму середньому інфрачервоному діапазоні 1–10 мкм із використанням фотонно-кристалічного оптичного волокна на основі високонелінійного Ge11.5As24Se64.5. Цей ультра-широкосмуговий суперконтинуум досягається у фотонно-кристалічному волокні довжиною 100 мм при нагнітанні 85 фемтосекундними лазерними імпульсами з довжиною хвилі 3,1 мкм і піковою потужністю 3 кВт. Широкий і плоский профіль дисперсії фотонно-кристалічного волокна на основі Ge11.5As24Se64.5 у поєднанні з його високою нелінійністю дає змогу генерувати гіперширокосмуговий суперконтинуум.

REFERENCES
  1. Vyas S, Singh G, Tiwari M and Tanabe T, 2015. Chalcogenide (LiGSe2, LiGISe, LiGaS2): A perfect material to design highly nonlinear PCFs for supercontinuum generation. Proc. ICRCWIP 2015. Springer Publication (2015), p. 409.
  2. Agarwal G P. Nonlinear fiber optics, 4th ed. Rochester, NY: Academic Press, 2007.
  3. Dudley J M, Genty G and Coen S, 2006. Supercontinuum generation in photonic crystal fibers. Rev. Mod. Phys. 78: 1135–1184. http://dx.doi.org/10.1103/RevModPhys.78.1135
  4. Tiwari M and Janyani V, 2011. Two-octave spanning supercontinuum in a soft glass photonic crystal fiber suitable for 1.55 µm pumping. J. Lighwave Technol. 29: 3560–3565. http://dx.doi.org/10.1109/JLT.2011.2170958
  5. Gai X, Han T, Prasad A, Madden S, Choi DY, Wang R, Bulla D and Luther-Davies B, 2010. Progress in optical waveguides fabricated from chalcogenide glasses. Opt. Express. 18: 26635–26646. http://dx.doi.org/10.1364/OE.18.026635
  6. Eggleton B J, Luther-Davies B and Richardson K, 2011. Chalcogenide photonics. Nature Photon. 5: 141–148.
  7. Karim M R, Rahman B M A and Agrawal G P, 2015. Mid-infrared supercontinuum generation using dispersion-engineered Ge11.5As24Se64.5 chalcogenide channel waveguide. Opt. Express. 23: 6903–6914. http://dx.doi.org/10.1364/OE.23.006903
  8. Gai X, Madden S, Choi D Y, Bulla D and Luther-Davies B, 2010. Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W−1m−1 at 1550 nm. Opt. Express. 18: 18866–18874. http://dx.doi.org/10.1364/OE.18.018866
  9. https://research-repository.stndrews.ac.uk/bitstream/10023/2111/6/MarcelSpurnyPhDThesis.pdf.
  10. Karim M R, Rahman B M A and Agrawal G P, 2014. Dispersion engineered Ge11.5As24Se64.5 nanowire for supercontinuum generation: A parametric study. Opt. Express. 22: 31029–31040. http://dx.doi.org/10.1364/OE.22.031029
  11. Sakunasinha P, Suwanarat S and Chiangga S, 2015. Mid-infrared supercontinuum in a Ge11.5As24Se64.5 chalcogenide waveguide. Proc. SPIE. 9659: 96591J. http://dx.doi.org/10.1117/12.2196150
  12. Karim M R, Rahman B M A, Azabi Y O, Agrawal A and Agrawal G P, 2015. Ultrabroadband mid-infrared supercontinuum generation through dispersion engineering of chalcogenide microstructured fibers. J. Opt. Soc. Amer. B. 32: 2343–2351. http://dx.doi.org/10.1364/JOSAB.32.002343
  13. Vyas S, Tanabe T, Singh G, and Tiwari M. Broadband supercontinuum generation and Raman response in Ge11.5As24Se64.5 based chalcogenide photonic crystal fiber. IEEE International Conference on Computational Techniques in Information and Communication Technologies (2016) 607-611.  http://dx.doi.org/10.1109/ICCTICT.2016.7514651 
  14. Poli F. Photonic crystal fibers. Properties and applications. Springer, 2007.
  15. Kartner F X, Dougherty D J, Haus H A and Ippen E P, 1994. Raman noise and soliton squeezing. J. Opt. Soc. Amer. B. 11: 1267–1276. http://dx.doi.org/10.1364/JOSAB.11.001267
  16. Sharma M and Konar S, 2015. Three octave spanning supercontinuum by red-shifted dispersive wave in photonic crystal fibers. J. Mod. Opt. 63: 501–510. http://dx.doi.org/10.1080/09500340.2015.1080868
  17. Yuan W, 2013. 2–10 μm mid-infrared supercontinuum generation in As2Se3 photonic crystal fiber. Laser Phys. Lett. 10: 095107. http://dx.doi.org/10.1088/1612-2011/10/9/095107
  18. Mogilevtsev D, Birks T A and Russell P St J, 1999. Localized function method for modeling defect modes in 2-D photonic crystals. J. Lightwave Technol. 17: 2078–2081. http://dx.doi.org/10.1109/50.802997
(c) Ukrainian Journal of Physical Optics