Home
page
Other articles
in this issue |
Ellipsometric studies
of nanocrystalline silicon films with the thicknesses less than 100 nm
Buchenko V. V. and Goloborodko A. A.
Taras Shevchenko National University
of Kyiv, 64/13 Volodymyrska Street, Kyiv, 01601, Ukraine
Download this
article
Abstract. .Our study deals with the structure of thin nanosilicon
films having the thicknesses less than 100 nm. It is measured using multi-angular
and spectral ellipsometry methods. Modelling of angular dependences of
the ellipsometric parameters shows a significant dependence of both structure
and composition of the nanosilicon films upon their thickness. In particular,
the volume fraction of voids increases with decreasing thickness of the
film. The effect of SiOx shell of the nanocrystals on the optical properties
of our films can be neglected. When the thickness of the nanocrystalline
layer is less than 50 nm, the compositions of this layer and the surface-roughness
layer become practically identical.
Keywords: nanocrystalline silicon, ellipsometry,
polarimetry, chemical vapour deposition, effective medium
PACS: 07.60.Fs, 78.20.-e, 42.25.Gy
UDC: 535.3
Ukr. J. Phys. Opt.
17 124-131
doi: 10.3116/16091833/17/3/124/2016
Received: 09.06.2016
Анотація. Стаття присвячена вивченню
структури тонких нанокремнійових плівок
з товщинами, меншими 100 нм, за методами багатокутової
та спектральної еліпсометрії. Моделювання
кутових залежностей еліпсометричних параметрів
показало істотну залежність структури
і складу нанокремнійових плівок від їхньої
товщини. Зокрема, зі зменшенням товщини
плівки зростає об'ємна частка пустот. Доведено,
що впливом нанокристалічної оболонки SiOx
на оптичні властивості плівок можна знехтувати.
Нарешті, за товщини нанокристалічного
шару, меншої 50 нм, склад цього шару і шару
поверхневої шорсткості практично однаковий. |
|
REFERENCES
-
Nakhodkin N, Kulish N and Rodionova T, 2010. Faceting of twin grain boundaries
in polysilicon films. Phys. Status Solidi (a) 207: 316–320. doi:10.1002/pssa.200824482
-
Spott A, Peters J, Davenport M L, Stanton E J, Merritt C D, Bewley W W,
Vurgaftman I, Kim C S, Meyer J. R, Kirch J, Mawst L J, Botez D and Bowers
J E, 2016. Quantum cascade laser on silicon. Optica 3: 45–551. doi:10.1364/OPTICA.3.000545
-
Nakhodkin N G, Kulish N P and Rodionova T V, 2013. Faceting of twin tips
in polysilicon films. J. Cryst. Growth. 381: 65–69. doi:10.1016/j.jcrysgro.2013.06.029
-
Rath J K, 2003. Low temperature polycrystalline silicon: a review on deposition,
physical properties and solar cell applications. Solar Energy Mater. and
Solar Cells. 76: 431–487. doi:10.1016/S0927-0248(02)00258-1
-
Dana S S, Anderle M, Rubloff GW and Acovic A, 1993. Chemical vapor deposition
of rough-morphology silicon films over a broad temperature range. Appl.
Phys. Lett. 63: 1387–1389. doi:10.1063/1.109685
-
Goloborodko A A, Epov M V, Robur L Y and Rodionova TV, 2014. Multiangular
and spectral ellipsometry for semiconductor nanostructures classification.
J. Nano-Electron. Phys. 6: 02002(1–5).
-
Ishihara S, He D and Shimizu I, 1994. Structure of polycrystalline silicon
thin film fabricated from fluorinated precursors by layer-by-layer technique.
Japan. J. Appl. Phys. 33: 51–56. doi:10.1143/JJAP.33.51
-
Murata K, Ito M, Hori M and Goto T, 1999. Control of seed layer for a low
temperature formation of polycrystalline silicon with high crystallinity
and a smooth surface. J. Vac. Sci. Technol. 17: 1098–1100. doi:10.1116/1.590702
-
Mukhopadhyay S, Chowdhury A and Ray S, 2008. Nanocrystalline silicon: A
material for thin film solar cells with better stability. Thin Solid Films.
516: 6824–6828. doi:10.1016/j.tsf.2007.12.065
-
Nakhodkin N, Rodionova T and Sutyagina A, 2015. Mechanisms of surface evolution
during the growth of undoped nanosilicon films. Ukr. Phys. J. 60: 166–170.
doi:10.15407/ujpe60.02.0165
-
Shin J H and Huh H, 2000. Direct low-temperature chemical vapor deposition
of fully crystalline micro- and polycrystalline silicon thin films on SiO2
using plasma immersion ion implantation. J. Vac. Sci. Technol. A. 18: 51–57.
doi:10.1116/1.582116
-
Mirgorodskiy IV, Golovan L A, Timoshenko V Y, Semenov A V and Puzikov V
M, 2014. Luminescence properties of thin nanocrystalline silicon-carbide
films fabricated by direct-beam ion deposition. Semiconductors. 48: 711–714.
doi:10.1134/S1063782614060207
-
Mussabek G, Mirgorodskij I, Kharin A, Taurbayev T and Timoshenko V, 2015.
Formation and optical properties of nanocomposite based on silicon nanocrystals
in polymer matrix for solar cell coating. J. Nanoelectron. Optoelectron.
9: 738–740. doi:10.1166/jno.2014.1670
-
Becker C, Amkreutz D, Sontheimer T, Preidel V, Lockau D and Haschke J,
2013. Polycrystalline silicon thin-film solar cells: Status and perspectives.
Solar Energy Mater. and Solar Cells. 119: 112–123. doi:10.1016/j.solmat.2013.05.043
-
Petrik P, Lohner T, Fried M, Biro L, Khanh N, Gyulai J, Lehnert W, Schneider
C and Ryssel H, 2000. Ellipsometric study of polycrystalline silicon films
prepared by low-pressure chemical vapor deposition. J. Appl. Phys. 87:
1734–1742. doi:10.1063/1.372085
-
Borghesi A, Giardini M E, Marazzi M, Sassella A and Santi G D, 1997. Ellipsometric
characterization of amorphous and polycrystalline silicon films deposited
using a single wafer reactor. Appl. Phys. Lett. 70: 892–894. doi:10.1063/1.118306
-
Barchuk O I, Bilenko K S, Goloborodko A A, Kurashov V N, Oberemok E A and
Savenkov S N., 2009. Influence of structure of polysilicon films on optical
characteristics of the reflected light. Nanosystems, Nanomaterials, Nanotechnology.
7: 421–431.
-
Fujiwara H, Spectroscopic ellipsometry: principles and applications. Chichester:
John Wiley & ons Ltd, 2007. doi:10.1002/9780470060193
-
Tompkins H G, A users's guide to ellipsometry. London: Academic Press Inc.,
1993.
-
Vuye G, Fisson S, Van Nguyen V, Wang Y, Rivory J and Abeles F, 1993. Temperature
dependence of the dielectric function of silicon using in situ spectroscopic
ellipsometry. Thin Solid Films. 233: 166–170. doi:10.1016/0040-6090(93)90082-Z
-
Pierce D T and Spicer W E, 1972. Electronic structure of amorphous Si from
photoemission and optical studies. Phys. Rev. B. 5: 3017–3029. doi:10.1103/PhysRevB.5.3017
-
Malitson I H, 1965. Interspecimen comparison of the refractive index of
fused silica. J. Opt. Soc. Amer. 55: 1205–1208. doi:10.1364/JOSA.55.001205
-
Kostruba A, Stetsyshyn Yu and Vlokh R, 2015. Method for determination of
the parameters of transparent ultrathin films deposited on transparent
substrates under conditions of low optical contrast. Appl. Opt. 54: 6208–6216.
doi:10.1364/AO.54.006208
-
Colard S, 1999. Optimisation of experimental conditions for variable angle
spectroscopic ellipsometry analysis. Application to GaAs/(Al,Ga)As quantum
well characterisation. Mater. Sci. Eng. B. 66: 88–91. doi:10.1016/S0921-5107(99)00135-X
-
Kostruba A M, 2003. Optimization of experimental conditions for ellipsometric
studies of ultra-thin absorptive films. Ukr. J. Phys. Opt. 4: 177–186.
doi:10.3116/16091833/4/4/177/2003
-
Kolomiets IS, Savenkov SN and Oberemok YeA, 2015. Polarization properties
of longitudinally inhomogeneous dichroic medium. Semiconductor Physics,
Quant. Electron. & Optoelectron. 18: 193–199. doi:10.15407/spqeo18.02.193
-
Palik E D, Handbook of optical constants of solids. Burlington: Academic
Press, 2002.
-
Sobolev V.V., Sobolev VVal and Shushkov SV, 2011. Optical spectra of the
six phases of the silicon, Semiconductors 45: 1247–1250. doi:10.1134/S1063782611100174
-
Golovan L A, Timoshenko V Yu and Kashkarov P K, 2007. Optical properties
of porous-system-based nanocomposites. Sov. Phys. Uspekhi. 50: 595–612.
doi:10.1070/PU2007v050n06ABEH006257
-
Nakhodkin NG, Kulish NP and Rodionova TV, 2003. Orientation relationships
in dendritic polysilicon films. J. Surf. Investig.: X-Ray, Synchrotron
and Neutron Techniques. 19: 17–20.
-
Nakhodkin NG, Kulish NP, Lytvyn P M, Rodionova TV and Sutyigina A, 2012.
Effect of thickness on structural characteristics of nanosilicon films.
Bulletin of Taras Shevchenko National University of Kyiv, Series 'Physics
& Mathematics'. 1: 285–288.
-
Nakhodkin NG, Kulish NP, Lytvyn PM and Rodionova TV, 2006. Features of
special joints of grain boundaries in polysilicon films of equiaxial and
dendritic structures. Functional Mater. 2: 305–309.
-
Wang X X, Zhang J G, Ding L, Cheng B W, Ge W K, Yu J Z and Wang Q M, 2005.
Origin and evolution of photoluminescence from Si nanocrystals embedded
in a SiO2 matrix. Phys. Rev. B. 72: 195313. doi:10.1103/PhysRevB.72.195313
-
Creekmore S, Seo J T, Yang Q, Wang Q, Anderson J, Pompey C and Temple D,
2003. Nonlinear optical properties of cadmium telluride semiconductor nanocrystals
for optical power-limiting application. J. Korean Phys. Soc. 42: S143–S148.
-
Kravets V, 2013. Silicon nanoparticles: their photoluminescence, complex
refractive index, and relationship with the band structure. Opt. Spectrosc.
114: 230–235. doi:10.1134/S0030400X13020148
(c) Ukrainian Journal
of Physical Optics |