Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Ellipsometric studies of nanocrystalline silicon films with the thicknesses less than 100 nm
Buchenko V. V. and Goloborodko A. A.

Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, Kyiv, 01601, Ukraine

Download this article

Abstract. .Our study deals with the structure of thin nanosilicon films having the thicknesses less than 100 nm. It is measured using multi-angular and spectral ellipsometry methods. Modelling of angular dependences of the ellipsometric parameters shows a significant dependence of both structure and composition of the nanosilicon films upon their thickness. In particular, the volume fraction of voids increases with decreasing thickness of the film. The effect of SiOx shell of the nanocrystals on the optical properties of our films can be neglected. When the thickness of the nanocrystalline layer is less than 50 nm, the compositions of this layer and the surface-roughness layer become practically identical. 

Keywords: nanocrystalline silicon, ellipsometry, polarimetry, chemical vapour deposition, effective medium

PACS: 07.60.Fs, 78.20.-e, 42.25.Gy
UDC: 535.3
Ukr. J. Phys. Opt. 17 124-131
doi: 10.3116/16091833/17/3/124/2016

Received: 09.06.2016

Анотація. Стаття присвячена вивченню структури тонких нанокремнійових плівок з товщинами, меншими 100 нм, за методами багатокутової та спектральної еліпсометрії. Моделювання кутових залежностей еліпсометричних параметрів показало істотну залежність структури і складу нанокремнійових плівок від їхньої товщини. Зокрема, зі зменшенням товщини плівки зростає об'ємна частка пустот. Доведено, що впливом нанокристалічної оболонки SiOx на оптичні властивості плівок можна знехтувати. Нарешті, за товщини нанокристалічного шару, меншої 50 нм, склад цього шару і шару поверхневої шорсткості практично однаковий.

REFERENCES
  1. Nakhodkin N, Kulish N and Rodionova T, 2010. Faceting of twin grain boundaries in polysilicon films. Phys. Status Solidi (a) 207: 316–320. doi:10.1002/pssa.200824482
  2. Spott A, Peters J, Davenport M L, Stanton E J, Merritt C D, Bewley W W, Vurgaftman I, Kim C S, Meyer J. R, Kirch J, Mawst L J, Botez D and Bowers J E, 2016. Quantum cascade laser on silicon. Optica 3: 45–551. doi:10.1364/OPTICA.3.000545
  3. Nakhodkin N G, Kulish N P and Rodionova T V, 2013. Faceting of twin tips in polysilicon films. J. Cryst. Growth. 381: 65–69. doi:10.1016/j.jcrysgro.2013.06.029
  4. Rath J K, 2003. Low temperature polycrystalline silicon: a review on deposition, physical properties and solar cell applications. Solar Energy Mater. and Solar Cells. 76: 431–487. doi:10.1016/S0927-0248(02)00258-1
  5. Dana S S, Anderle M, Rubloff GW and Acovic A, 1993. Chemical vapor deposition of rough-morphology silicon films over a broad temperature range. Appl. Phys. Lett. 63: 1387–1389. doi:10.1063/1.109685
  6. Goloborodko A A, Epov M V, Robur L Y and Rodionova TV, 2014. Multiangular and spectral ellipsometry for semiconductor nanostructures classification. J. Nano-Electron. Phys. 6: 02002(1–5).
  7. Ishihara S, He D and Shimizu I, 1994. Structure of polycrystalline silicon thin film fabricated from fluorinated precursors by layer-by-layer technique. Japan. J. Appl. Phys. 33: 51–56. doi:10.1143/JJAP.33.51
  8. Murata K, Ito M, Hori M and Goto T, 1999. Control of seed layer for a low temperature formation of polycrystalline silicon with high crystallinity and a smooth surface. J. Vac. Sci. Technol. 17: 1098–1100. doi:10.1116/1.590702
  9. Mukhopadhyay S, Chowdhury A and Ray S, 2008. Nanocrystalline silicon: A material for thin film solar cells with better stability. Thin Solid Films. 516: 6824–6828. doi:10.1016/j.tsf.2007.12.065
  10. Nakhodkin N, Rodionova T and Sutyagina A, 2015. Mechanisms of surface evolution during the growth of undoped nanosilicon films. Ukr. Phys. J. 60: 166–170. doi:10.15407/ujpe60.02.0165
  11. Shin J H and Huh H, 2000. Direct low-temperature chemical vapor deposition of fully crystalline micro- and polycrystalline silicon thin films on SiO2 using plasma immersion ion implantation. J. Vac. Sci. Technol. A. 18: 51–57. doi:10.1116/1.582116
  12. Mirgorodskiy IV, Golovan L A, Timoshenko V Y, Semenov A V and Puzikov V M, 2014. Luminescence properties of thin nanocrystalline silicon-carbide films fabricated by direct-beam ion deposition. Semiconductors. 48: 711–714. doi:10.1134/S1063782614060207
  13. Mussabek G, Mirgorodskij I, Kharin A, Taurbayev T and Timoshenko V, 2015. Formation and optical properties of nanocomposite based on silicon nanocrystals in polymer matrix for solar cell coating. J. Nanoelectron. Optoelectron. 9: 738–740. doi:10.1166/jno.2014.1670
  14. Becker C, Amkreutz D, Sontheimer T, Preidel V, Lockau D and Haschke J, 2013. Polycrystalline silicon thin-film solar cells: Status and perspectives. Solar Energy Mater. and Solar Cells. 119: 112–123. doi:10.1016/j.solmat.2013.05.043
  15. Petrik P, Lohner T, Fried M, Biro L, Khanh N, Gyulai J, Lehnert W, Schneider C and Ryssel H, 2000. Ellipsometric study of polycrystalline silicon films prepared by low-pressure chemical vapor deposition. J. Appl. Phys. 87: 1734–1742. doi:10.1063/1.372085
  16. Borghesi A, Giardini M E, Marazzi M, Sassella A and Santi G D, 1997. Ellipsometric characterization of amorphous and polycrystalline silicon films deposited using a single wafer reactor. Appl. Phys. Lett. 70: 892–894. doi:10.1063/1.118306
  17. Barchuk O I, Bilenko K S, Goloborodko A A, Kurashov V N, Oberemok E A and Savenkov S N., 2009. Influence of structure of polysilicon films on optical characteristics of the reflected light. Nanosystems, Nanomaterials, Nanotechnology. 7: 421–431.
  18. Fujiwara H, Spectroscopic ellipsometry: principles and applications. Chichester: John Wiley & ons Ltd, 2007. doi:10.1002/9780470060193
  19. Tompkins H G, A users's guide to ellipsometry. London: Academic Press Inc., 1993.
  20. Vuye G, Fisson S, Van Nguyen V, Wang Y, Rivory J and Abeles F, 1993. Temperature dependence of the dielectric function of silicon using in situ spectroscopic ellipsometry. Thin Solid Films. 233: 166–170. doi:10.1016/0040-6090(93)90082-Z
  21. Pierce D T and Spicer W E, 1972. Electronic structure of amorphous Si from photoemission and optical studies. Phys. Rev. B. 5: 3017–3029. doi:10.1103/PhysRevB.5.3017
  22. Malitson I H, 1965. Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc. Amer. 55: 1205–1208. doi:10.1364/JOSA.55.001205
  23. Kostruba A, Stetsyshyn Yu and Vlokh R, 2015. Method for determination of the parameters of transparent ultrathin films deposited on transparent substrates under conditions of low optical contrast. Appl. Opt. 54: 6208–6216. doi:10.1364/AO.54.006208
  24. Colard S, 1999. Optimisation of experimental conditions for variable angle spectroscopic ellipsometry analysis. Application to GaAs/(Al,Ga)As quantum well characterisation. Mater. Sci. Eng. B. 66: 88–91. doi:10.1016/S0921-5107(99)00135-X
  25. Kostruba A M, 2003. Optimization of experimental conditions for ellipsometric studies of ultra-thin absorptive films. Ukr. J. Phys. Opt. 4: 177–186. doi:10.3116/16091833/4/4/177/2003
  26. Kolomiets IS, Savenkov SN and Oberemok YeA, 2015. Polarization properties of longitudinally inhomogeneous dichroic medium. Semiconductor Physics, Quant. Electron. & Optoelectron. 18: 193–199. doi:10.15407/spqeo18.02.193
  27. Palik E D, Handbook of optical constants of solids. Burlington: Academic Press, 2002.
  28. Sobolev V.V., Sobolev VVal and Shushkov SV, 2011. Optical spectra of the six phases of the silicon, Semiconductors 45: 1247–1250. doi:10.1134/S1063782611100174
  29. Golovan L A, Timoshenko V Yu and Kashkarov P K, 2007. Optical properties of porous-system-based nanocomposites. Sov. Phys. Uspekhi. 50: 595–612. doi:10.1070/PU2007v050n06ABEH006257
  30. Nakhodkin NG, Kulish NP and Rodionova TV, 2003. Orientation relationships in dendritic polysilicon films. J. Surf. Investig.: X-Ray, Synchrotron and Neutron Techniques. 19: 17–20.
  31. Nakhodkin NG, Kulish NP, Lytvyn P M, Rodionova TV and Sutyigina A, 2012. Effect of thickness on structural characteristics of nanosilicon films. Bulletin of Taras Shevchenko National University of Kyiv, Series 'Physics & Mathematics'. 1: 285–288.
  32. Nakhodkin NG, Kulish NP, Lytvyn PM and Rodionova TV, 2006. Features of special joints of grain boundaries in polysilicon films of equiaxial and dendritic structures. Functional Mater. 2: 305–309.
  33. Wang X X, Zhang J G, Ding L, Cheng B W, Ge W K, Yu J Z and Wang Q M, 2005. Origin and evolution of photoluminescence from Si nanocrystals embedded in a SiO2 matrix. Phys. Rev. B. 72: 195313. doi:10.1103/PhysRevB.72.195313
  34. Creekmore S, Seo J T, Yang Q, Wang Q, Anderson J, Pompey C and Temple D, 2003. Nonlinear optical properties of cadmium telluride semiconductor nanocrystals for optical power-limiting application. J. Korean Phys. Soc. 42: S143–S148.
  35. Kravets V, 2013. Silicon nanoparticles: their photoluminescence, complex refractive index, and relationship with the band structure. Opt. Spectrosc. 114: 230–235. doi:10.1134/S0030400X13020148
(c) Ukrainian Journal of Physical Optics