Home
page
Other articles
in this issue |
Magnetooptic rotation
and thermal expansion of AgGaGeS4 crystals
1Adamenko D., 1Say
A., 2Parasyuk O., 1Martynyuk-Lototska
I. and 1Vlokh R.
1Vlokh Institute
of Physical Optics, 23 Dragomanov Street, 79005 Lviv, Ukraine
2Department of
Inorganic and Physical Chemistry, Eastern European National University,
13 Voli Ave., 43025 Lutsk, Ukraine
Download this
article
Abstract. We have studied experimentally Faraday effect and thermal
expansion for AgGaGeS4 crystals. The Verdet constant VF
and the effective Faraday coefficient F'11 are determined
at the light wavelength l=632.8 nm under normal
conditions. They are equal to VF =(7.83±0.21)rad/(Tm)
and F'33= 0.98F33+0.02F11=(1.40±0,04)10-13
m/A. The principal thermal expansion coefficients of AgGaGeS4 under normal
conditions are equal to a11=(2.51±0.31)10-6K-1,
a22=(3.98±0.26)10-6K-1
and a33=(5.63±0.36)10-6K-1.
They are temperature-independent at 300–600 K.
Keywords: Faraday effect, AgGaGeS4 crystals,
Verdet constant, thermal expansion
PACS: 33.55.Ad
UDC: 537.632.4
Ukr. J. Phys. Opt.
17 105-111
doi: 10.3116/16091833/17/3/105/2016
Received: 22.06.2016
Анотація. У роботі експериментально
досліджено термічне розширення і ефект
Фарадея в кристалах AgGaGeS4. На довжині хвилі
оптичного випромінювання l=632.8нм
за нормальних умов визначено сталу Верде
VF
і ефективну компоненту тензора ефекту
Фарадея F'33= 0.98F33+0.02F11
цих кристалів. Вони дорівнюють відповідно
VF
=(7.83±0.21)рад/(Tлм) і (1.40±0,04)10-13
м/A. Головні коефіцієнти термічного розширення
кристалів AgGaGeS4 за нормальних умов дорівнюють
a11=(2.51±0.31)10-6K-1,
a22=(3.98±0.26)10-6K-1
і a33=(5.63±0.36)10-6K-1.
У діапазоні 300–600 K вони не залежать від
температури.
|
|
REFERENCES
-
Pobedimskaya E A, Alimova L L, Belov N V and Badikov V V, 1981. The crystal
structure of the Ag-germanogallium sulfide and GeS2. Sov. Phys. Doklady.
26: 259–263.
-
Chbani N, Loireau-Lozac'h A M, Rivet J and Dugue J, 1995. Systeme pseudo-ternaire
Ag2S–Ga2S3–GeS2: Diagramme de phases – Domaine vitreux. J. Solid
State Chem. 117: 189–200. doi:10.1006/jssc.1995.1262
-
Yurchenko O M, Olekseyuk I D, Parasyuk O V and Pankevich V Z, 2005. Single
crystal growth and properties of AgGaGeS4. J. Cryst. Growth. 275: 1983–1985.
doi:10.1016/j.jcrysgro.2004.11.319
-
Badikov V V, Tyulyupa A G, Shevyrdyaeva G S and Sheina S G, 1991. Solid
solutions in the AgGaS2–GeS2 and AgGaSe2–GeSe2 systems. Inorg. Mater.
27: 177–180.
-
Davidyuk G Y, Myronchuk G L, Lakshminarayana G, Yakymchuk O V, Reshak A
H, Wojciechowski A, Rakus P, AlZayed N, Chmiel M, Kityk I V and Parasyuk
O V, 2012. IR-induced features of AgGaGeS4 crystalline semi-conductors.
J. Phys. Chem. Solids. 73: 439–443. doi:10.1016/j.jpcs.2011.11.026
-
Yurchenko O M, Olekseyuk I D, Parasyuk O V and Pankevich V Z, 2005. Single
crystal growth and properties of AgGaGeS4. J. Cryst. Growth. 275: 1983–1985.
doi:10.1016/j.jcrysgro.2004.11.319
-
Miyata K, Petrov V and Kato K, 2007. Phase-matching properties for AgGaGeS4.
Appl. Opt. 46: 5728–5731. doi:10.1364/AO.46.005728
-
Das Subhasis, Ghosh Chittaranjan, Gangopadhyay Sudipta, Andreev Y M and
Badikov V V, 2006. AgGaGeS4 crystals for nonlinear laser device applications.
Japan. J. Appl. Phys. 45: 9000–9002. doi:10.1143/JJAP.45.9000
-
Ren D-M, Huang J-Z, Qu Y-C, Hu X-Y, Andreev Y, Geiko P, Badikov V and Shaiduko
A, 2004. Optical properties and frequency conversion with AgGaGeS4 crystal.
Chin. Phys. 13: 1468–1473. doi:10.1088/1009-1963/13/9/019
-
Matvienko G G, Andreev Y M, Badikov V V, Geiko P P, Grechin S G and Karapuzikov
A I, 2002. Wide band frequency converters for lidar systems. Proc. SPIE.
4546: 119–126. doi:10.1117/12.453990
-
Petrov V, Badikov V, Shevyrdyaeva G, Panyutin V and Chizhikov V, 2004.
Phase-matching properties and optical parametric amplification in single
crystals of AgGaGeS4. Opt. Mater. 26: 217–222. doi:10.1016/j.optmat.2004.04.007
-
Jonsson F and Flytzanis C, 2000. Polarization state dependence of optical
parametric processes in artificially gyrotropic media. J. Opt. A: Pure
Appl. Opt. 2: 299–302. doi:10.1088/1464-4258/2/4/310
-
Zhdanov B V, Zheludev N I, Kovrigin A I and Kuznetsov V I, 1979. Investigation
of magnetooptic effects near molecular vibrational resonances using optical
parametric oscillators. Sov. J. Quantum Electron. 9: 202–204. doi:10.1070/QE1979v009n02ABEH008733
-
Olekseyuk I D, Gorgut G P and Shevchuk M V, 2002. Phase equilibria in the
AgGaS2–GeS2. System. Pol. J. Chem. 76: 915–919.
-
Chbani N, Loireau-Lozac'h A M, Rivet J and Dugué J, 1995. Systéme pseudo-ternaire
Ag2S–Ga2S3–GeS2: Diagramme de phases – Domaine vitreux. J. Sol. State
Chem. 117: 189–200. doi:10.1006/jssc.1995.1262
-
Schunemann P G, Zawilski K T and Pollak T M, 2006. Horizontal gradient
freeze growth of AgGaGeS4 and AgGaGe5Se12. J. Cryst. Growth. 287: 248–251.
doi:10.1016/j.jcrysgro.2005.11.017
-
Wu, H, Ni Y, Lin Ch, Mao M, Cheng G and Wang Zh, 2011. Growth of large
size AgGaGeS4 crystal for infrared conversion. Frontiers of Optoelectronics
in China. 4: 137–140. doi:10.1007/s12200-011-0155-8
-
Petrov V, Badikov V, Shevyrdyaeva G, Panyutin V and Chizhikov V, 2004.
Phase-matching properties and optical parametric amplification in single
crystals of AgGaGeS4. Opt. Mater. 26: 217–222. doi:10.1016/j.optmat.2004.04.007
-
Yurchenko O M, Olekseyuk I D, Parasyuk O V and Pankevich V Z, 2005. Single
crystal growth and properties of AgGaGeS4. J. Cryst. Growth. 275: e1983–e1985.
doi:10.1016/j.jcrysgro.2004.11.319
-
Ni, Y, Wu, H, Wang Zh, Mao M, Cheng G and Fei H, 2009. Synthesis and growth
of nonlinear infrared crystal material AgGeGaS4 via a new reaction route.
J. Cryst. Growth. 311: 1404–1406. doi:10.1016/j.jcrysgro.2008.12.042
-
Say A, Mys O, Grabar A, Vysochanskii Yu and Vlokh R, 2009. Thermal expansion
of Sn2P2S6 crystals. Phase Trans. 82: 531–540. doi:10.1080/01411590903079003
(c) Ukrainian Journal
of Physical Optics |