Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Magnetooptic rotation and thermal expansion of AgGaGeS4 crystals
1Adamenko D., 1Say A., 2Parasyuk O., 1Martynyuk-Lototska I. and 1Vlokh R.

1Vlokh Institute of Physical Optics, 23 Dragomanov Street, 79005 Lviv, Ukraine
2Department of Inorganic and Physical Chemistry, Eastern European National University, 13 Voli Ave., 43025 Lutsk, Ukraine

Download this article

Abstract. We have studied experimentally Faraday effect and thermal expansion for AgGaGeS4 crystals. The Verdet constant VF  and the effective Faraday coefficient F'11 are determined at the light wavelength l=632.8 nm under normal conditions. They are equal to VF  =(7.83±0.21)rad/(Tm) and F'33= 0.98F33+0.02F11=(1.40±0,04)10-13 m/A. The principal thermal expansion coefficients of AgGaGeS4 under normal conditions are equal to a11=(2.51±0.31)10-6K-1, a22=(3.98±0.26)10-6K-1 and a33=(5.63±0.36)10-6K-1. They are temperature-independent at 300–600 K.

Keywords: Faraday effect, AgGaGeS4 crystals, Verdet constant, thermal expansion

PACS: 33.55.Ad 
UDC: 537.632.4
Ukr. J. Phys. Opt. 17 105-111
doi: 10.3116/16091833/17/3/105/2016

Received: 22.06.2016

Анотація. У роботі експериментально досліджено термічне розширення і ефект Фарадея в кристалах AgGaGeS4. На довжині хвилі оптичного випромінювання l=632.8нм  за нормальних умов визначено сталу Верде VF  і ефективну компоненту тензора ефекту Фарадея F'33= 0.98F33+0.02F11  цих кристалів. Вони дорівнюють відповідно VF  =(7.83±0.21)рад/(Tлм) і (1.40±0,04)10-13 м/A. Головні коефіцієнти термічного розширення кристалів AgGaGeS4 за нормальних умов дорівнюють a11=(2.51±0.31)10-6K-1, a22=(3.98±0.26)10-6K-1 і a33=(5.63±0.36)10-6K-1. У діапазоні 300–600 K вони не залежать від температури.
 

 

REFERENCES
  1. Pobedimskaya E A, Alimova L L, Belov N V and Badikov V V, 1981. The crystal structure of the Ag-germanogallium sulfide and GeS2. Sov. Phys. Doklady. 26: 259–263.
  2. Chbani N, Loireau-Lozac'h A M, Rivet J and Dugue J, 1995. Systeme pseudo-ternaire Ag2S–Ga2S3–GeS2: Diagramme de phases – Domaine vitreux. J. Solid State Chem. 117: 189–200. doi:10.1006/jssc.1995.1262
  3. Yurchenko O M, Olekseyuk I D, Parasyuk O V and Pankevich V Z, 2005. Single crystal growth and properties of AgGaGeS4. J. Cryst. Growth. 275: 1983–1985. doi:10.1016/j.jcrysgro.2004.11.319
  4. Badikov V V, Tyulyupa A G, Shevyrdyaeva G S and Sheina S G, 1991. Solid solutions in the AgGaS2–GeS2 and AgGaSe2–GeSe2 systems. Inorg. Mater. 27: 177–180.
  5. Davidyuk G Y, Myronchuk G L, Lakshminarayana G, Yakymchuk O V, Reshak A H, Wojciechowski A, Rakus P, AlZayed N, Chmiel M, Kityk I V and Parasyuk O V, 2012. IR-induced features of AgGaGeS4 crystalline semi-conductors. J. Phys. Chem. Solids. 73: 439–443. doi:10.1016/j.jpcs.2011.11.026
  6. Yurchenko O M, Olekseyuk I D, Parasyuk O V and Pankevich V Z, 2005. Single crystal growth and properties of AgGaGeS4. J. Cryst. Growth. 275: 1983–1985. doi:10.1016/j.jcrysgro.2004.11.319
  7. Miyata K, Petrov V and Kato K, 2007. Phase-matching properties for AgGaGeS4. Appl. Opt. 46: 5728–5731. doi:10.1364/AO.46.005728
  8. Das Subhasis, Ghosh Chittaranjan, Gangopadhyay Sudipta, Andreev Y M and Badikov V V, 2006. AgGaGeS4 crystals for nonlinear laser device applications. Japan. J. Appl. Phys. 45: 9000–9002. doi:10.1143/JJAP.45.9000 
  9. Ren D-M, Huang J-Z, Qu Y-C, Hu X-Y, Andreev Y, Geiko P, Badikov V and Shaiduko A, 2004. Optical properties and frequency conversion with AgGaGeS4 crystal. Chin. Phys. 13: 1468–1473. doi:10.1088/1009-1963/13/9/019
  10. Matvienko G G, Andreev Y M, Badikov V V, Geiko P P, Grechin S G and Karapuzikov A I, 2002. Wide band frequency converters for lidar systems. Proc. SPIE. 4546: 119–126. doi:10.1117/12.453990
  11. Petrov V, Badikov V, Shevyrdyaeva G, Panyutin V and Chizhikov V, 2004. Phase-matching properties and optical parametric amplification in single crystals of AgGaGeS4. Opt. Mater. 26: 217–222. doi:10.1016/j.optmat.2004.04.007
  12. Jonsson F and Flytzanis C, 2000. Polarization state dependence of optical parametric processes in artificially gyrotropic media. J. Opt. A: Pure Appl. Opt. 2: 299–302. doi:10.1088/1464-4258/2/4/310
  13. Zhdanov B V, Zheludev N I, Kovrigin A I and Kuznetsov V I, 1979. Investigation of magnetooptic effects near molecular vibrational resonances using optical parametric oscillators. Sov. J. Quantum Electron. 9: 202–204. doi:10.1070/QE1979v009n02ABEH008733
  14. Olekseyuk I D, Gorgut G P and Shevchuk M V, 2002. Phase equilibria in the AgGaS2–GeS2. System. Pol. J. Chem. 76: 915–919.
  15. Chbani N, Loireau-Lozac'h A M, Rivet J and Dugué J, 1995. Systéme pseudo-ternaire Ag2S–Ga2S3–GeS2: Diagramme de phases – Domaine vitreux. J. Sol. State Chem. 117: 189–200. doi:10.1006/jssc.1995.1262 
  16. Schunemann P G, Zawilski K T and Pollak T M, 2006. Horizontal gradient freeze growth of AgGaGeS4 and AgGaGe5Se12. J. Cryst. Growth. 287: 248–251. doi:10.1016/j.jcrysgro.2005.11.017
  17. Wu, H, Ni Y, Lin Ch, Mao M, Cheng G and Wang Zh, 2011. Growth of large size AgGaGeS4 crystal for infrared conversion. Frontiers of Optoelectronics in China. 4: 137–140. doi:10.1007/s12200-011-0155-8
  18. Petrov V, Badikov V, Shevyrdyaeva G, Panyutin V and Chizhikov V, 2004. Phase-matching properties and optical parametric amplification in single crystals of AgGaGeS4. Opt. Mater. 26: 217–222. doi:10.1016/j.optmat.2004.04.007 
  19. Yurchenko O M, Olekseyuk I D, Parasyuk O V and Pankevich V Z, 2005. Single crystal growth and properties of AgGaGeS4. J. Cryst. Growth. 275: e1983–e1985.  doi:10.1016/j.jcrysgro.2004.11.319
  20. Ni, Y, Wu, H, Wang Zh, Mao M, Cheng G and Fei H, 2009. Synthesis and growth of nonlinear infrared crystal material AgGeGaS4 via a new reaction route. J. Cryst. Growth. 311: 1404–1406. doi:10.1016/j.jcrysgro.2008.12.042
  21. Say A, Mys O, Grabar A, Vysochanskii Yu and Vlokh R, 2009. Thermal expansion of Sn2P2S6 crystals. Phase Trans. 82: 531–540. doi:10.1080/01411590903079003
(c) Ukrainian Journal of Physical Optics