Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Conditions of appearance of the topological defects of optical indicatrix orientation in the glasses with residual stresses: Movement of the defects under application of external mechanical stress to CaB4O7 glasses

Vasylkiv Yu., Kryvyy T., Skab I. and Vlokh R.

Download this article

Abstract. We have revealed experimentally a movement of the topological defects of optical indicatrix orientation, which takes place in CaB4O7 glass with residual mechanical stresses under application of external compressive mechanical stresses. The effect is explained basing on the equation of optical indicatrix perturbed by the combination of both residual and external mechanical stresses. The conditions for the appearance of the topological defects with the strength module |1/2| in glasses are formulated. Finally, possibilities for the appropriate topological reactions caused by the applied stresses are discussed.

Keywords: topological defects, optical indicatrix, residual stresses, glasses

PACS: 78.20.hb, 62.40.+I, 02.40.Pc
UDC: 535.551+620.171.5+515.143
Ukr. J. Phys. Opt. 17 65-74
doi: 10.3116/16091833/17/2/65/2016
Received: 23.03.2016

Анотація. У роботі експериментально виявлено зміщення топологічних дефектів орієнтації оптичної індикатриси, пов’язаних з існуванням залишкових напружень у склі CaB4O7, під дією стискаючого механічного напруження. Спостережуваний ефект пояснено на основі рівняння оптичної індикатриси, збуреної залишковими напруженнями і прикладеним механічним напруженням. Сформульовано умови появи в склі топологічних дефектів орієнтації оптичної індикатриси з модулем сили |1/2| і обговорено можливість топологічних реакцій, спричинених прикладеним напруженням.

REFERENCES
  1. Zurek W H, 1985. Cosmological experiments in superfluid helium? Nature. 317: 505–508. doi:10.1038/317505a0
  2. Dirac P, 1931. Quantised singularities in the electromagnetic field. Proc. Roy. Soc. (London) A. 133: 60–72. doi:10.1098/rspa.1931.0130
  3. Georgi H and Glashow S L, 1974. Unity of all elementary particle forces. Phys. Rev. Lett. 32: 438–441. doi:10.1103/PhysRevLett.32.438
  4. Zheludev I S. Symmetry and its application. Moscow: Atomizdat (1976).
  5. Trebin H.-R., 1998. Defects in liquid crystals and cosmology. Liq. Cryst. 24: 127–130. doi:10.1080/026782998207659
  6. Kurik M V and Lavrentovich O D, 1988. Defects in liquid crystals: homotopy theory and experimental studies, Sov. Phys. Uspekhi. 31: 196–224. doi:10.1070/PU1988v031n03ABEH005710
  7. Vasylkiv Yu., Skab I. and Vlokh R., 2014. Generation of double-charged optical vortices on the basis of electro-optic Kerr effect. Appl. Opt. 53: B60–B73. doi:10.1364/AO.53.000B60
  8. Skab I, Vasylkiv Yu, Smaga I and Vlokh R, 2011. Spin-to-orbital momentum conversion via electro-optic Pockels effect in crystals. Phys. Rev. A. 84: 043815. doi:10.1103/PhysRevA.84.043815
  9. Vasylkiv Yu, Skab I and Vlokh R, 2014. Crossover regime of optical vortices generation via electrooptic nonlinearity: the problem of optical vortices with the fractional charge generated by crystals. J. Opt. Soc. Amer. A. 31: 1936–1945. doi:10.1364/JOSAA.31.001936
  10. Vasylkiv Yu., Kryvyy T., Skab I. and Vlokh R. 2014. Behavior of topological defects of optical indicatrix orientation in cubic single crystals under conically distributed electric field. 1. The electric field and the optical beam parallel to the three-fold symmetry axis. Ukr. J. Phys. Opt. 15: 184–194. doi:10.3116/16091833/15/4/184/2014
  11. Vasylkiv Yu., Kryvyy T., Skab I. and Vlokh R. 2015. Behaviour of topological defects of optical indicatrix orientation in cubic, hexagonal, trigonal and tetragonal crystals under conically distributed electric field. 2. The electric field and the optical beam parallel to the principal crystallographic directions. Ukr. J. Phys. Opt. 16: 1–16. doi:10.3116/16091833/16/1/1/2015
  12. Skab I, Vasylkiv Yu and Vlokh R, 2012. Induction of optical vortex in the crystals subjected to bending stresses. Appl. Opt. 51: 5797–5805. doi:10.1364/AO.51.005797
  13. Skab I, Vasylkiv Yu, Krupych O, Savaryn V and Vlokh R, 2012. Generation of doubly charged vortex beam by concentrated loading of glass disks along their diameter. Appl. Opt. 51: 1631–1637. doi:10.1364/AO.51.001631
  14. Skab I, Vasylkiv Yu, Savaryn V and Vlokh R, 2011. Optical anisotropy induced by torsion stresses in LiNbO3 crystals: appearance of an optical vortex. J. Opt. Soc. Amer. A. 28: 633–640. doi:10.1364/JOSAA.28.000633
  15. Skab I, Vasylkiv Yu, Zapeka B, Savaryn V and Vlokh R, 2011. Appearance of singularities of optical fields under torsion of crystals containing threefold symmetry axes. J. Opt. Soc. Amer. A. 28: 1331–1340. doi:10.1364/JOSAA.28.001331
  16. Vasylkiv Y, Skab I, Smyk M and Vlokh R, 2014. Topological defects of optical indicatrix orientation in stressed glasses: spatial distribution of optical anisotropy parameters. Appl. Opt. 53: 3967–3975. doi:10.1364/AO.53.003967
  17. Vasylkiv Yu, Skab I and Vlokh R, 2016. Identification of the topological defects of optical indicatrix orientation in CaB4O7 glasses. J. Opt. (to be published).
  18. Adamiv V T, Burak Ya V, Gamernyk R V, Romanyuk M M and Teslyuk I M, 2011. Optical properties of alkali and alkaline earth tetraborate glasses prepared in the alumina crucible. Functional Mater. 18: 298–303.
(c) Ukrainian Journal of Physical Optics