Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Passively Q-switched fibre laser based on interaction of evanescent field in optical microfibre with graphene-oxide saturable absorber

Jaddoa M.F., Faruki M.J., Razak M.Z.A., Azzuhri S.R. and Ahmad H.

Download this article

Abstract. We have developed and approved experimentally a passively Q-switched erbium-doped fibre laser. It is based on the saturable absorption of graphene oxide solution deposited around a microfibre waveguide. The microfibre is fabricated using a standard flame-brushing technique. By controlling the pump power in the cavity, the fibre laser can produce microsecond Q-switched pulses at 1529 nm with the maximum repetition rate 53.47 kHz. With a pumping power of 105.98 mW at 980 nm, each of the laser pulses has the energy about 0.78 nJ and the maximum output power is 42.15 μW

Keywords: microfibre, saturable absorber, Q-switched, fibre laser

PACS: 42.55.Wd
UDC: 535.374:621.375.8
Ukr. J. Phys. Opt. 17 58-64
doi: 10.3116/16091833/17/2/58/2016
Received: 07.03.2016

Анотація. Запропоновано та апробовано лазер з пасивною модуляцією добротності на основі оптичного волокна, легованого ербієм. Робота лазера базується на насиченому поглинанні в оксиді графену, нанесеному навколо мікроволокна. Мікроволокно обробляли з використанням стандартної полум’яно-очищувальної технології. За умови контролю потужності нагнітання в резонаторі волоконний лазер може індукувати мікросекундні імпульси з модуляцією добротності на довжині хвилі 1529 нм з максимальною повторюваністю 53,47 кГц. Кожен імпульс мав енергію біля 0,78 нДж , а максимальна вихідна потужність становила 42.15 мкВт при нагнітанні лазерним діодом потужністю 105,98 мВт на довжині хвилі 980 нм..

REFERENCES
  1. Huang H, Yang L-M and Liu J, 2012. Femtosecond fiber-laser-based, laser-induced breakdown spectroscopy. SPIE Defense, Security and Sensing. International Society for Optics and Photonics. 835817-1–835817-9. doi:10.1117/12.918615
  2. Skorczakowski M, Swiderski J, Pichola W, Nyga P, Zajac A, Maciejewska M, Galecki L, Kasprzak J, Gross S and Heinrich A, 2010. Mid-infrared Q-switched Er:YAG laser for medical applications. Laser Phys. Lett. 7: 498. doi:10.1002/lapl.201010019
  3. Rao Y, Zhu T, Ran Z, Wang Y, Jiang J and Hu A, 2004. Novel long-period fiber gratings written by high-frequency CO2 laser pulses and applications in optical fiber communication. Opt. Commun. 229: 209–221. doi:10.1016/j.optcom.2003.10.048
  4. Yubing T, Huiming T, Jiying P and HongYi L, 2008. LD-pumped actively Q-switched Yb:YAG laser with an acoustic-optical modulator. Laser Phys. 18: 12–14. doi:10.1134/S1054660X08010027
  5. Keller U, Weingarten KJ, Kärtner FX, Kopf D, Braun B, Jung ID, Fluck R, Hönninger C, Matuschek N and Au J A D, 1996. Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J. Sel. Topics Quantum Electron. 2: 435–453. doi:10.1109/2944.571743
  6. Liu H, Chow K, Yamashita S and Set S, 2013. Carbon-nanotube-based passively Q-switched fiber laser for high energy pulse generation. Opt. Laser Technol. 45: 713–716. doi:10.1016/j.optlastec.2012.05.005
  7. Zhou D-P, Wei L, Dong B and Liu W-K, 2010. Tunable passively-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber. IEEE Photon. Technol. Lett. 22: 9–11. doi:10.1109/LPT.2009.2035325
  8. Kashiwagi K and Yamashita S, 2009. Deposition of carbon nanotubes around microfiber via evanascent light. Opt. Express. 17: 18364–18370. doi:10.1364/OE.17.018364
  9. Liu J, Xu J and Wang P, 2012. Graphene-based passively Q-switched 2μm thulium-doped fiber laser. Opt. Commun. 285: 5319–5322. doi:10.1016/j.optcom.2012.07.063
  10. Xie G, Ma J, Lv P, Gao W, Yuan P, Qian L, Yu H, Zhang H, Wang J and Tang D, 2012. Graphene saturable absorber for Q-switching and mode locking at 2 μm wavelength. Opt. Mater. Express. 2: 878–883. doi:10.1364/OME.2.000878
  11. Popa D, Sun Z, Hasan T, Torrisi F, Wang F and Ferrari A, 2011. Graphene Q-switched, tunable fiber laser. Appl. Phys. Lett. 98: 073106. doi:10.1063/1.3552684
  12. Wang J, Luo Z, Zhou M, Ye C, Fu H, Cai Z, Cheng H, Xu H and Qi W, 2012. Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker. IEEE Photon. J. 4: 1295–1305. doi:10.1109/JPHOT.2012.2208736
  13. Lee J, Koo J, Debnath P, Song Y and Lee J, 2013. A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber. Laser Phys Lett. 10: 035103. doi:10.1088/1612-2011/10/3/035103
  14. Saleh Z, Anyi C, Rahman A, Ali N, Harun S, Manaf M and Arof H, 2014. Q-switched erbium-doped fibre laser using graphene-based saturable absorber obtained by mechanical exfoliation. Ukr. J. Phys. Opt. 15: 24–29. doi:10.3116/16091833/15/1/24/2014
  15. Harun SW, Ahmad H, Jasim A and Sulaiman A. Microfiber structures and its sensor and laser applications. Photonics Global Conference (PGC). IEEE (2012). PP. 1–3. doi:10.1109/PGC.2012.6458113
  16. Khazaeinezhad R, Kassani SH, Jeong H, Park KJ, Kim BY, Yeom D-I and Oh K, 2015. Ultrafast pulsed all-fiber laser based on tapered fiber enclosed by few-layer WS 2 nanosheets. IEEE Photon. Technol. Lett. 27: 1581–1584. doi:10.1109/LPT.2015.2426178
  17. Jung M, Koo J, Chang Y, Debnath P, Song Y and Lee J, 2012. An all fiberized, 1.89-μm Q-switched laser employing carbon nanotube evanescent field interaction. Laser Phys. Lett. 9: 669–674. doi:10.7452/lapl.201210061
  18. Luo Z-C, Liu M, Guo Z-N, Jiang X-F, Luo A-P, Zhao C-J, Yu X-F, Xu W-C and Zhang H, 2015. Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser. Opt. Express. 23: 20030–20039. doi:10.1364/OE.23.020030
  19. Shahriary L and Athawale A A, 2014. Graphene oxide synthesized by using modified hummers approach. Int. J. Ren. En. Env. Eng. 2: 58–63.
  20. Sobon G, Sotor J, Jagiello J, Kozinski R, Librant K, Zdrojek M, Lipinska L and Abramski KM, 2012. Linearly polarized, Q-switched Er-doped fiber laser based on reduced graphene oxide saturable absorber. Appl. Phys. Lett. 101: 241106. doi:10.1063/1.4770373
  21. Zhao J, Wang Y, Yan P, Ruan S, Tsang Y, Zhang G and Li H, 2014. An ytterbium-doped fiber laser with dark and Q-switched pulse generation using graphene-oxide as saturable absorber. Opt. Commun. 312: 227–232. doi:10.1016/j.optcom.2013.09.038
  22. Men S, Liu Z, Zhang X, Wang Q, Shen H, Bai F, Gao L, Xu X, Wei R and Chen X, 2013. A graphene passively Q-switched Nd:YAG ceramic laser at 1123 nm. Laser Phys. Lett. 10: 035803. doi:10.1088/1612-2011/10/3/035803
  23. Fan D, Mou C, Bai X, Wang S, Chen N and Zeng X, 2014. Passively Q-switched erbium-doped fiber laser using evanescent field interaction with gold-nanosphere based saturable absorber. Opt. Express. 22: 18537–18542. doi:10.1364/OE.22.018537
(c) Ukrainian Journal of Physical Optics