Home
page
Other articles
in this issue |
Enhancement of fluorescence
in inorganic dyes by metallic nanostructured surfaces
Kitsakorn Locharoenrat and Pattareeya Damrongsak
Download this
article
Abstract. We have studied the influence of shape and chemical
content of metallic nanostructures (gold-palladium core–shell nanorods,
gold nanobipyramids and single-crystalline porous palladium nanocrystals)
on the luminescence of Rhodamine 6G and Coumarin153 dyes. The changes found
in the emission intensity are attributed to different proportions of the
dyes and the metallic nanostructures. The enhancement of the fluorescence
observed by us for the cases of Rhodamine 6G with gold-palladium core–shell
nanorods and Rhodamine 6G with gold nanobipyramids suggests their promising
plasmonic properties. This may be regarded as a preliminary step towards
development of the fluorescent probes possessing high photo-sensitivity.
Keywords: metals, gold, nanostructures, palladium,
plasmonic resonance
PACS: 33.50.Dq, 78.67.Qa, 78.67.Rb
UDC: 535.33
Ukr. J. Phys. Opt.
17 21-26
doi: 10.3116/16091833/17/1/21/2016
Received: 13.11.2015
Анотація. У роботі вивчено вплив форми
металічних наноструктур (золото- паладієвих
наностержнів, золотих нанобіпірамід і
монокристалічних пористих нанокристалів
паладію) на поведінку флюоресценції люмінесцентних
барвників – родаміну 6G і кумарину 153. Зміни
інтенсивності випромінювання пов’язані
зі співвідношенням вмісту барвників і
металічних наноструктур. Виявлене нами
підсилення флюоресценції родаміну 6G із
золото-паладієвими наностержнями і золотими
нанобіпірамідами перспективне з точки
зору плазмонних властивостей. Воно є попереднім
кроком у розвитку високофоточутливих флуоресцентних
зондів. |
|
REFERENCES
-
Noginov M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E,
Stout S, Herz E, Suteewong T and Wiesner U, 2009. Demonstration of a spaser-based
nanolaser. Nature. 460: 1110–1112. doi:10.1038/nature08318
-
MacLaughlin C M, Mullaithilaga N, Yang G, Ip S Y, Wang C and Walker G C,
2013. Surface-enhanced Raman scattering dye-labeled Au nanoparticles for
triplexed detection of Leuke-mia and Lymphoma cells and SERS flow cytometry.
Langmuir. 29: 1908–1919. doi:10.1021/la303931c
-
Lim D K, Jeon K S, Hwang J H, Kim H, Kwon S, Suh Y D and Nam J M, 2011.
Highly uniform and reproducible surface-enhanced Raman scattering from
DNA-tailorable nanoparticles with 1-nm interior gap. Nature Nanotechnol.
6: 452–460. doi:10.1038/nnano.2011.79
-
Iosin M, Baldeck P and Astilean S, 2009. Plasmon-enhanced fluorescence
of dye molecules. Nucl. Instrum. Meth. in Phys. Res. B. 267: 403–405.
doi:10.1016/j.nimb.2008.10.055
-
Kang K A, Wang J, Jasinski J B and Achilefu S, 2011. Fluorescence manipulation
by gold nanoparticles: From complete quenching to extensive enhancement.
J. Nanobiotechnol. 9: 16. doi:10.1186/1477-3155-9-16
-
Lee J H, Gibson K J, Chen G and Weizmann Y, 2015. Bipyramid-templated synthesis
of monodisperse anisotropic gold nanocrystals. Nature Commun. 6: 7571.
doi:10.1038/ncomms8571
-
Henning A M, Watt J, Miedziak P J, Cheong S, Santonastaso M, Song M, Takeda
Y, Kirkl A I, Taylor S H and Tilley R D, 2013. Gold–palladium core–shell
nanocrystals with size and shape control optimized for catalytic performance.
Ang. Chemie. 52: 1477–1480. doi:10.1002/anie.201207824
-
Zhnag J, Feng C, Deng Y, Liu L, Wu Y, Shen B, Zhong C and Hu W, 2014. Shape-controlled
synthesis of palladium single-crystalline nanoparticles: The effect of
HCl oxidative etching and facet-dependent catalytic properties. Chem. Mater.
26: 1213–1218. doi:10.1021/cm403591g
-
Kubin R F and Flethcher A N, 1982. Fluorescence quantum yields of some
rhodamine dyes. J. Lumin. 27: 455–462. doi:10.1016/0022-2313(82)90045-X
-
Li H, Cai L and Chen Z. Advances in chemical sensors. New York: InTech
(2012).
-
So H S, Rao B A, Hwang J, Yesudas K and Son Y A, 2014. Synthesis of novel
squaraine–bis(rhodamine-6G): A fluorescent chemosensor for the selective
detection of Hg2+. Sensors and Actuators B: Chemical. 202: 779–787. doi:10.1016/j.snb.2014.06.013
-
Zhang L, Wang J, Fan J, Guo K and Peng X, 2011. A highly selective, fluorescent
chemosen-sor for bioimaging of Fe3+. Bioorganic and Medicinal Chem. Lett.
21: 5413–5416. doi:10.1016/j.bmcl.2011.07.001
-
Wagner B D, 2009. The use of Coumarins as environmentally-sensitive fluorescent
probes of heterogeneous inclusion systems. Molecules. 14: 210–237. doi:10.3390/molecules14010210
(c) Ukrainian Journal
of Physical Optics |