Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Enhancement of fluorescence in inorganic dyes by metallic nanostructured surfaces

Kitsakorn Locharoenrat and Pattareeya Damrongsak

Download this article

Abstract. We have studied the influence of shape and chemical content of metallic nanostructures (gold-palladium core–shell nanorods, gold nanobipyramids and single-crystalline porous palladium nanocrystals) on the luminescence of Rhodamine 6G and Coumarin153 dyes. The changes found in the emission intensity are attributed to different proportions of the dyes and the metallic nanostructures. The enhancement of the fluorescence observed by us for the cases of Rhodamine 6G with gold-palladium core–shell nanorods and Rhodamine 6G with gold nanobipyramids suggests their promising plasmonic properties. This may be regarded as a preliminary step towards development of the fluorescent probes possessing high photo-sensitivity.

Keywords: metals, gold, nanostructures, palladium, plasmonic resonance

PACS: 33.50.Dq, 78.67.Qa, 78.67.Rb
UDC: 535.33
Ukr. J. Phys. Opt. 17 21-26
doi: 10.3116/16091833/17/1/21/2016
Received: 13.11.2015

Анотація. У роботі вивчено вплив форми металічних наноструктур (золото- паладієвих наностержнів, золотих нанобіпірамід і монокристалічних пористих нанокристалів паладію) на поведінку флюоресценції люмінесцентних барвників – родаміну 6G і кумарину 153. Зміни інтенсивності випромінювання пов’язані зі співвідношенням вмісту барвників і металічних наноструктур. Виявлене нами підсилення флюоресценції родаміну 6G із золото-паладієвими наностержнями і золотими нанобіпірамідами перспективне з точки зору плазмонних властивостей. Воно є попереднім кроком у розвитку високофоточутливих флуоресцентних зондів.

REFERENCES
  1. Noginov M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T and Wiesner U, 2009. Demonstration of a spaser-based nanolaser. Nature. 460: 1110–1112. doi:10.1038/nature08318
  2. MacLaughlin C M, Mullaithilaga N, Yang G, Ip S Y, Wang C and Walker G C, 2013. Surface-enhanced Raman scattering dye-labeled Au nanoparticles for triplexed detection of Leuke-mia and Lymphoma cells and SERS flow cytometry. Langmuir. 29: 1908–1919. doi:10.1021/la303931c
  3. Lim D K, Jeon K S, Hwang J H, Kim H, Kwon S, Suh Y D and Nam J M, 2011. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nature Nanotechnol. 6: 452–460. doi:10.1038/nnano.2011.79
  4. Iosin M, Baldeck P and Astilean S, 2009. Plasmon-enhanced fluorescence of dye molecules. Nucl. Instrum. Meth. in Phys. Res. B. 267: 403–405. doi:10.1016/j.nimb.2008.10.055
  5. Kang K A, Wang J, Jasinski J B and Achilefu S, 2011. Fluorescence manipulation by gold nanoparticles: From complete quenching to extensive enhancement. J. Nanobiotechnol. 9: 16. doi:10.1186/1477-3155-9-16
  6. Lee J H, Gibson K J, Chen G and Weizmann Y, 2015. Bipyramid-templated synthesis of monodisperse anisotropic gold nanocrystals. Nature Commun. 6: 7571. doi:10.1038/ncomms8571
  7. Henning A M, Watt J, Miedziak P J, Cheong S, Santonastaso M, Song M, Takeda Y, Kirkl A I, Taylor S H and Tilley R D, 2013. Gold–palladium core–shell nanocrystals with size and shape control optimized for catalytic performance. Ang. Chemie. 52: 1477–1480. doi:10.1002/anie.201207824
  8. Zhnag J, Feng C, Deng Y, Liu L, Wu Y, Shen B, Zhong C and Hu W, 2014. Shape-controlled synthesis of palladium single-crystalline nanoparticles: The effect of HCl oxidative etching and facet-dependent catalytic properties. Chem. Mater. 26: 1213–1218. doi:10.1021/cm403591g
  9. Kubin R F and Flethcher A N, 1982. Fluorescence quantum yields of some rhodamine dyes. J. Lumin. 27: 455–462. doi:10.1016/0022-2313(82)90045-X
  10. Li H, Cai L and Chen Z. Advances in chemical sensors. New York: InTech (2012).
  11. So H S, Rao B A, Hwang J, Yesudas K and Son Y A, 2014. Synthesis of novel squaraine–bis(rhodamine-6G): A fluorescent chemosensor for the selective detection of Hg2+. Sensors and Actuators B: Chemical. 202: 779–787. doi:10.1016/j.snb.2014.06.013
  12. Zhang L, Wang J, Fan J, Guo K and Peng X, 2011. A highly selective, fluorescent chemosen-sor for bioimaging of Fe3+. Bioorganic and Medicinal Chem. Lett. 21: 5413–5416. doi:10.1016/j.bmcl.2011.07.001
  13. Wagner B D, 2009. The use of Coumarins as environmentally-sensitive fluorescent probes of heterogeneous inclusion systems. Molecules. 14: 210–237. doi:10.3390/molecules14010210
(c) Ukrainian Journal of Physical Optics