Home
page
Other articles
in this issue |
Topological defects
of optical indicatrix orientation associated with the edge structural dislocations
in crystals
Savaryn V., Vasylkiv Yu., Skab I. and Vlokh
R.
Download this
article
Abstract. We have analyzed the effect of edge structural dislocations
in solid-crystalline structures on the topology of optical indicatrix parameters.
It has been found that consideration of strict boundary conditions leads
to zeroing of the stress tensor components in the vicinity of dislocation
core. Subsequently, piezooptically induced birefringence in the vicinity
of the dislocation core conditions the appearance of optical vortices around
this core. Basing on our analysis, we have demonstrated that, even with
small Burgers vectors and intermediate values of piezooptic coefficients,
the edge dislocation can be detected in the polarized light using optical
microscopes
Keywords: crystalline structure, edge dislocations,
optical indicatrix, topological defects
PACS: 42.50.Tx, 78.20.Fm, 42.50.-p, 78.20.hb,
61.50.-f, 61.72.Ff
UDC: 535.5+544.022.341.1
Ukr. J. Phys. Opt.
16 138-146
doi: 10.3116/16091833/16/3/138/2015
Received: 19.06.2015
Анотація. У роботі проаналізовано
вплив крайових структурних дислокацій
у кристалах на топологію параметрів оптичної
індикатриси. Показано, що врахування строгих
граничних умов приводить до занулення
компонент тензора механічних напружень
і, як наслідок, оптичного двопроменезаломлення
в околі серцевини дислокації, забезпечуючи
точні умови для генерації оптичних вихорів
зі світловим кільцем навколо ядра дислокації.
Продемонстровано, що навіть за умов малих
векторів Бюргерса і проміжних значень
п’єзооптичних коефіцієнтів крайові дислокації
можна виявити в поляризованому світлі
з використанням оптичного мікроскопа. |
|
REFERENCES
-
Skab I, Vasylkiv Yu, Zapeka B, Savaryn V and Vlokh R, 2011. On the ap-pearance
of singularities of optical field under torsion of crystals containing
three-fold symmetry axes. J. Opt. Soc. Amer. A. 28: 1331–1340. doi:10.1364/JOSAA.28.001331
-
Skab I, Vasylkiv Yu, Smaga I and Vlokh R, 2011. Spin-to-orbital momentum
conversion via electrooptic Pockels effect in crystals. Phys. Rev. A. 84:
043815. doi:10.1103/PhysRevA.84.043815
-
Skab I, Vasylkiv Yu and Vlokh R, 2012. Induction of optical vortex in the
crystals subjected to bending stresses. Appl. Opt. 51: 5797–5805. doi:10.1364/AO.51.005797
-
Skab I, Vasylkiv Yu, Krupych O, Savaryn V and Vlokh R, 2012. Generation
of doubly charged vortex beam by concentrated loading of glass disks along
their diameter. Appl. Opt. 51: 1631–1637. doi:10.1364/AO.51.001631
-
DiVincenzo D P, 1995. Quantum computation. Science. 270: 255–261. doi:10.1126/science.270.5234.255
-
Groblacher S, Jennewein T, Viziri A, Weihs G and Zeillinger A, 2006. Ex-perimental
quantum cryptography with qutrits. New J. Phys. 8: 75. doi:10.1088/1367-2630/8/5/075
-
Molina-Terriza G, Vaziri A, Rehácek J, Hradil Z and Zeilinger A, 2004.
Triggered qutrits for quantum communication protocols. Phys. Rev. Lett.
92: 167903. doi:10.1103/PhysRevLett.92.167903
-
Bouwmeester D, Pan J-W, Mattle K, Eibl M, Weinfurter H and Zeilinger A,
1997. Experimental quantum teleportation. Nature. 390: 575–579. doi:10.1038/37539
-
Grier D G, 2003. A revolution in optical manipulation. Nature. 424: 810–816.
doi:10.1038/nature01935
-
Soskin M and Vasnetsov M, 2001. Singular optics. Progr. Opt. 42: 219–276.
doi:10.1016/S0079-6638(01)80018-4
-
Marrucci L, 2008. Generation of helical modes of light by spin-to-orbital
angular momentum conversion in inhomogeneous liquid crystals. Mol. Cryst.
Liq. Cryst. 488: 148–162. doi:10.1080/15421400802240524
-
Marrucci L, Karimi E, Slussarenko S, Piccirillo B, Santamato E, Nagali
E and Sciarrino F, 2011. Spin-to-orbital conversion of the angular momentum
of light and its classical and quantum applications. J. Opt. 13: 064001.
doi:10.1088/2040-8978/13/6/064001
-
Karimi E, Piccirillo B, Nagali E, Marrucci L and Santamato E, 2009. Effi-cient
generation and sorting of orbital angular momentum eigenmodes of light
by thermally tuned q-plates. Appl. Phys. Lett. 94: 231124. doi:10.1063/1.3154549
-
Piccirillo B, D'Ambrosio V, Slussarenko S, Marrucci L and Santamato E,
2010. Photon spin-to-orbital angular momentum conversion via an electri-cally
tunable q-plate. Appl. Phys. Lett. 97: 241104. doi:10.1063/1.3527083
-
Beth R A, 1936. Mechanical detection and measurement of the angular mo-mentum
of light. Phys. Rev. 50: 115–125. doi:10.1103/PhysRev.50.115
-
Savaryn V, Vasylkiv Yu, Krupych O, Skab I and Vlokh R, 2013. Polarization
singularities of optical fields caused by structural dislocations in crystals.
J. Opt. 15: 044023. doi:10.1088/2040-8978/15/4/044023
-
Savaryn V, Vasylkiv Yu, Krupych O, Skab I and Vlokh R, 2015. Corrigen-dum:
Polarization singularities of optical fields caused by structural disloca-tions
in crystals (J. Opt. 2013, 15 044023) J. Opt. 17: 089501. doi:10.1088/2040-8978/17/8/089501
-
Likhachev V A and Khairov R Yu, Introduction into the theory of disclina-tions.
Leningrad: Publishing House of Leningrad University (1975).
-
Friedel J, Dislocations. Oxford: Pergamon Press (1964).
-
Lurie A I and Belyaev A, Theory of elasticity. Berlin: Springer (2005).
doi:10.1007/978-3-540-26455-2
-
Hellwege K-H and Hellwege A M, Landolt–Börnstein numerical data and
functional relationships in science and technology, New Series, Group III:
Crystal and solid state physics, Vol. 11: Elastic, piezoelectric, pyroelectric,
piezooptic, electrooptic constants and nonlinear susceptibilities of crystals.
Berlin: Springer-Verlag (1979).
-
http://www.elektrosteklo.ru/NaCl_rus.htm
-
http://www.optotl.ru/mat/NaCl
-
Narasimhamurty T S, Photoelastic and electrooptic properties of crystals.
New York: Plenum Press (1981). doi:10.1007/978-1-4757-0025-1
-
Krupych O, Savaryn V and Vlokh R, 2014. Precise determination of full ma-trix
of piezo-optic coefficients with a four-point bending technique: the ex-ample
of lithium niobate crystals. Appl. Opt. 53: B1–B7. doi:10.1364/AO.53.0000B1
-
Vasylkiv Yu, Savaryn V, Smaga I, Skab I and Vlokh R 2011 On determina-tion
of sign of the piezo-optic coefficients using torsion method. Appl. Opt.
50: 2512–2518. doi:10.1364/AO.50.002512
-
Weis R S and Gaylord T K 1985. Lithium niobate: Summary of physical properties
and crystal structure. Appl. Phys. A. 37: 191–203. doi:10.1007/BF00614817
(c) Ukrainian Journal
of Physical Optics |