Ukrainian Journal of Physical Optics 

Home page

Other articles 

in this issue
Topological defects of optical indicatrix orientation associated with the edge structural dislocations in crystals 

Savaryn V., Vasylkiv Yu., Skab I. and Vlokh R.

Download this article

Abstract. We have analyzed the effect of edge structural dislocations in solid-crystalline structures on the topology of optical indicatrix parameters. It has been found that consideration of strict boundary conditions leads to zeroing of the stress tensor components in the vicinity of dislocation core. Subsequently, piezooptically induced birefringence in the vicinity of the dislocation core conditions the appearance of optical vortices around this core. Basing on our analysis, we have demonstrated that, even with small Burgers vectors and intermediate values of piezooptic coefficients, the edge dislocation can be detected in the polarized light using optical microscopes

Keywords: crystalline structure, edge dislocations, optical indicatrix, topological defects

PACS: 42.50.Tx, 78.20.Fm, 42.50.-p, 78.20.hb, 61.50.-f, 61.72.Ff
UDC: 535.5+544.022.341.1
Ukr. J. Phys. Opt. 16 138-146
doi: 10.3116/16091833/16/3/138/2015
Received: 19.06.2015

Анотація. У роботі проаналізовано вплив крайових структурних дислокацій у кристалах на топологію параметрів оптичної індикатриси. Показано, що врахування строгих граничних умов приводить до занулення компонент тензора механічних напружень і, як наслідок, оптичного двопроменезаломлення в околі серцевини дислокації, забезпечуючи точні умови для генерації оптичних вихорів зі світловим кільцем навколо ядра дислокації. Продемонстровано, що навіть за умов малих векторів Бюргерса і проміжних значень п’єзооптичних коефіцієнтів крайові дислокації можна виявити в поляризованому світлі з використанням оптичного мікроскопа. 

  1. Skab I, Vasylkiv Yu, Zapeka B, Savaryn V and Vlokh R, 2011. On the ap-pearance of singularities of optical field under torsion of crystals containing three-fold symmetry axes. J. Opt. Soc. Amer. A. 28: 1331–1340. doi:10.1364/JOSAA.28.001331
  2. Skab I, Vasylkiv Yu, Smaga I and Vlokh R, 2011. Spin-to-orbital momentum conversion via electrooptic Pockels effect in crystals. Phys. Rev. A. 84: 043815. doi:10.1103/PhysRevA.84.043815
  3. Skab I, Vasylkiv Yu and Vlokh R, 2012. Induction of optical vortex in the crystals subjected to bending stresses. Appl. Opt. 51: 5797–5805. doi:10.1364/AO.51.005797
  4. Skab I, Vasylkiv Yu, Krupych O, Savaryn V and Vlokh R, 2012. Generation of doubly charged vortex beam by concentrated loading of glass disks along their diameter. Appl. Opt. 51: 1631–1637. doi:10.1364/AO.51.001631
  5. DiVincenzo D P, 1995. Quantum computation. Science. 270: 255–261. doi:10.1126/science.270.5234.255
  6. Groblacher S, Jennewein T, Viziri A, Weihs G and Zeillinger A, 2006. Ex-perimental quantum cryptography with qutrits. New J. Phys. 8: 75. doi:10.1088/1367-2630/8/5/075
  7. Molina-Terriza G, Vaziri A, Rehácek J, Hradil Z and Zeilinger A, 2004. Triggered qutrits for quantum communication protocols. Phys. Rev. Lett. 92: 167903. doi:10.1103/PhysRevLett.92.167903
  8. Bouwmeester D, Pan J-W, Mattle K, Eibl M, Weinfurter H and Zeilinger A, 1997. Experimental quantum teleportation. Nature. 390: 575–579. doi:10.1038/37539
  9. Grier D G, 2003. A revolution in optical manipulation. Nature. 424: 810–816. doi:10.1038/nature01935
  10. Soskin M and Vasnetsov M, 2001. Singular optics. Progr. Opt. 42: 219–276. doi:10.1016/S0079-6638(01)80018-4
  11. Marrucci L, 2008. Generation of helical modes of light by spin-to-orbital angular momentum conversion in inhomogeneous liquid crystals. Mol. Cryst. Liq. Cryst. 488: 148–162. doi:10.1080/15421400802240524
  12. Marrucci L, Karimi E, Slussarenko S, Piccirillo B, Santamato E, Nagali E and Sciarrino F, 2011. Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. J. Opt. 13: 064001. doi:10.1088/2040-8978/13/6/064001
  13. Karimi E, Piccirillo B, Nagali E, Marrucci L and Santamato E, 2009. Effi-cient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates. Appl. Phys. Lett. 94: 231124. doi:10.1063/1.3154549
  14. Piccirillo B, D'Ambrosio V, Slussarenko S, Marrucci L and Santamato E, 2010. Photon spin-to-orbital angular momentum conversion via an electri-cally tunable q-plate. Appl. Phys. Lett. 97: 241104. doi:10.1063/1.3527083
  15. Beth R A, 1936. Mechanical detection and measurement of the angular mo-mentum of light. Phys. Rev. 50: 115–125. doi:10.1103/PhysRev.50.115
  16. Savaryn V, Vasylkiv Yu, Krupych O, Skab I and Vlokh R, 2013. Polarization singularities of optical fields caused by structural dislocations in crystals. J. Opt. 15: 044023. doi:10.1088/2040-8978/15/4/044023
  17. Savaryn V, Vasylkiv Yu, Krupych O, Skab I and Vlokh R, 2015. Corrigen-dum: Polarization singularities of optical fields caused by structural disloca-tions in crystals (J. Opt. 2013, 15 044023) J. Opt. 17: 089501. doi:10.1088/2040-8978/17/8/089501
  18. Likhachev V A and Khairov R Yu, Introduction into the theory of disclina-tions. Leningrad: Publishing House of Leningrad University (1975).
  19. Friedel J, Dislocations. Oxford: Pergamon Press (1964).
  20. Lurie A I and Belyaev A, Theory of elasticity. Berlin: Springer (2005). doi:10.1007/978-3-540-26455-2
  21. Hellwege K-H and Hellwege A M, Landolt–Börnstein numerical data and functional relationships in science and technology, New Series, Group III: Crystal and solid state physics, Vol. 11: Elastic, piezoelectric, pyroelectric, piezooptic, electrooptic constants and nonlinear susceptibilities of crystals. Berlin: Springer-Verlag (1979).
  24. Narasimhamurty T S, Photoelastic and electrooptic properties of crystals. New York: Plenum Press (1981). doi:10.1007/978-1-4757-0025-1
  25. Krupych O, Savaryn V and Vlokh R, 2014. Precise determination of full ma-trix of piezo-optic coefficients with a four-point bending technique: the ex-ample of lithium niobate crystals. Appl. Opt. 53: B1–B7. doi:10.1364/AO.53.0000B1
  26. Vasylkiv Yu, Savaryn V, Smaga I, Skab I and Vlokh R 2011 On determina-tion of sign of the piezo-optic coefficients using torsion method. Appl. Opt. 50: 2512–2518. doi:10.1364/AO.50.002512
  27. Weis R S and Gaylord T K 1985. Lithium niobate: Summary of physical properties and crystal structure. Appl. Phys. A. 37: 191–203. doi:10.1007/BF00614817
(c) Ukrainian Journal of Physical Optics