Home
page
Other articles
in this issue |
Plasmonic properties
of gold-palladium core–shell nanorods
Kitsakorn Locharoenrat and Pattareeya Damrongsak
Download this
article
Abstract. We focus on the plasmonic properties of palladium-coated
gold nanorods. Two characteristic plasmon bands of those nanorods have
been detected in the optical absorption. One of them, which is located
at about 525 nm, is associated with electron oscillations along the transverse
direction. This band does not depend on the palladium-shell thickness and
the dielectric susceptibility of the surrounding medium. The other band,
at about 800–900 nm, is associated with electron oscillations along the
longitudinal direction. It exhibits a clear shift when the palladium-shell
thickness and the dielectric surrounding are changed. Our results point
to a novel possible way for tuning photo-catalytic ability of the nanorods
and their possible use in biological/chemical sensors.
Keywords: metals, plasmons, nanomaterials,
nanorods
PACS: 73.20.Mf, 78.67.Qa, 81.10.Dn
UDC: 535.34+535.331
Ukr. J. Phys. Opt.
16 120-126
doi: 10.3116/16091833/16/3/120/2015
Received: 23.04.2015
Анотація. У роботі досліджено плазмонні
властивості золотих наностержнів, покритих
паладієм. У спектрах їхнього оптичного
поглинання виявлено дві характерні плазмонні
смуги. Одна з них, розташована в околі 525
нм, пов’язана з електронними коливаннями
вздовж поперечного напрямку стержнів.
Її положення не залежить од товщини паладієвої
оболонки та діелектричної сталої оточуючого
середовища. Інша, розташована в околі 800–900
нм, асоціюється з електронними коливаннями
в поздовжньому напрямку. Вона зазнає зсуву
зі зміною товщини паладієвої оболонки
і показника заломлення оточуючого середовища.
Наші дослідження вказують на новий можливий
шлях керування фотокаталітичною здатністю
наностержнів і перспективи їхнього використання
в біолого-хімічних сенсорах. |
|
REFERENCES
-
Liu H, Ye F, Yao Q, Cao H, Xie J and Yang J, 2014. Stellated Ag-Pt bimetallic
nanoparticles: An effective platform for catalytic activity tuning. Sci.
Rep. 4: 3669. doi:10.1038/srep03969
-
Hu G, Nitze F, Gracia-Espino E, Ma J, Barzegar HR, Sharifi T, Jia X, Shchukarev
A, Lu L, Ma C and Wagberg T, 2014. Small palladium islands embedded in
palladium–tungsten bimetallic nanoparticles form catalytic hotspots for
oxygen reduction. Nature Commun. 5: 5253. doi:10.1038/ncomms6253
-
Liu W J, Qian T T and Jiang H, 2014. Bimetallic Fe nanoparticles: Recent
advances in syn-thesis and application in catalytic elimination of environmental
pollutants. Chem. Eng. J. 236: 448–463. doi:10.1016/j.cej.2013.10.062
-
Konig R Y G, Schwarze M, Schomacker R and Stubenrauch C, 2014. Catalytic
activity of mono- and bi-metallic nanoparticles synthesized via microemulsions.
Catalysts. 4: 256–275. doi:10.3390/catal4030256
-
Rao V K and Radhakrishnan T P, 2013. Hollow bimetallic nanoparticles generated
in situ inside a polymer thin film: Fabrication and catalytic application
of silver–palladium–poly (vinyl alcohol). J. Mater. Chem. A. 1: 13612–13618.
doi:10.1039/c3ta12807e
-
Zhang H, Haba M, Okumura M, Akita T, Hashimoto S and Toshima N, 2013. Novel
formation of Ag/Au bimetallic nanoparticles by physical mixture of monometallic
nanoparticles in dispersions and their application to catalysts for aerobic
glucose oxidation. Langmuir. 29: 10330–10339. doi:10.1021/la401878g
-
Boote B W, Byun H and Kim J H, 2014. Silver-gold bimetallic nanoparticles
and their appli-cations as optical materials. J. Nanosci. Nanotechnol.
14: 1563–1577. doi:10.1166/jnn.2014.9077
-
Adekoya J A, Dare E O, Mesubi M A and Revaprasadu N, 2014. Synthesis and
characterization of optically active fractal seed mediated silver nickel
bimetallic nanoparticles. J. Mater. 2014: 184216. doi:10.1155/2014/184216
-
Perez J L J, Fuentes R G, Ramirez J F S, Vidal O U G, Tellez-Sanchez D
E, Pacheco Z N C, Orea A C and Garcia J A F, 2013. Nonlinear coefficient
determination of Au/Pd bimetallic nanoparticles using Z-scan. Adv. Nanoparticles.
2: 223–228. doi:10.4236/anp.2013.23031
-
Arquilliere P P, Santini C, Haumesser P H and Aouine M, 2011. Synthesis
of copper and cop-per-ruthenium nanoparticles in ionic liquids for the
metallization of advanced interconnect structures. ECS Transac. 35: 11–16.
-
Sachan R, Yadavali S, Shirato N, Krishna H, Ramos V, Duscher G, Pennycook
S J, Gangop-adhyay A K, Garcia H and Kalyanaraman R, 2012. Self-organized
bimetallic Ag–Co nanopar-ticles with tunable localized surface plasmons
showing high environmental stability and sensi-tivity. Nanotechnol. 23:
275604. doi:10.1088/0957-4484/23/27/275604
-
Hu M, Chen J, Li Z Y, Au L, Hartland G V, Li X, Marquez M and Xia Y, 2006.
Gold nanos-tructures: Engineering their plasmonic properties for biomedical
applications. Chem. Soc. Rev. 35: 1084–1094. doi:10.1039/b517615h
-
Dykman L A and Khlebstov N G, 2011. Gold nanoparticles in biology and medicine:
Recent advances and prospects. Acta Nature. 3: 34–55.
-
Gates B C, 2013. Supported gold catalysts: New properties offered by nanometer
and sub-nanometer structures. Chem. Commun. 49: 7876–7877. doi:10.1039/c3cc44942d
-
Zhou X, Xu W, Liu G, Panda D and Chen P, 2010. Size-dependent catalytic
activity and dy-namics of gold nanoparticles at the single-molecule level.
J. Amer. Chem. Soc. 132: 138–146. doi:10.1021/ja904307n
-
Zhu Y, Jin R and Sun Y, 2011. Atomically monodisperse gold nanoclusters
catalysts with precise core-shell structure. Catalysts. 1: 3–17. doi:10.3390/catal1010003
-
Ruibin J, 2013. Plasmonic properties of bimetallic nanostructures and their
applications in hydrogen sensing and chemical reactions. Dissert. Abs.
Inter. 75-06: 1–176.
-
Hao J and Hui W, 2014. Controlled overgrowth of Pd on Au nanorods. CrystEngComm
16: 9469–9477. doi:10.1039/C4CE00601A
-
Pradeep T, A textbook of nanoscience and nanotechnology. New York: McGraw
Hill (2012).
-
Sandrock M L, Geiger F M and Foss C A, 1999. Synthesis and second-harmonic
generation studies of noncentrosymmetric gold nanostructures. J. Phys.
Chem. B. 103: 2668–2673. doi:10.1021/jp9845874
-
Palik E D, Handbook of optical constants of solids. New York: Academic
Press (1991).
(c) Ukrainian Journal
of Physical Optics |