Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Plasmonic properties of gold-palladium core–shell nanorods

Kitsakorn Locharoenrat and Pattareeya Damrongsak

Download this article

Abstract. We focus on the plasmonic properties of palladium-coated gold nanorods. Two characteristic plasmon bands of those nanorods have been detected in the optical absorption. One of them, which is located at about 525 nm, is associated with electron oscillations along the transverse direction. This band does not depend on the palladium-shell thickness and the dielectric susceptibility of the surrounding medium. The other band, at about 800–900 nm, is associated with electron oscillations along the longitudinal direction. It exhibits a clear shift when the palladium-shell thickness and the dielectric surrounding are changed. Our results point to a novel possible way for tuning photo-catalytic ability of the nanorods and their possible use in biological/chemical sensors.

Keywords: metals, plasmons, nanomaterials, nanorods

PACS: 73.20.Mf, 78.67.Qa, 81.10.Dn
UDC: 535.34+535.331
Ukr. J. Phys. Opt. 16 120-126
doi: 10.3116/16091833/16/3/120/2015
Received: 23.04.2015

Анотація. У роботі досліджено плазмонні властивості золотих наностержнів, покритих паладієм. У спектрах їхнього оптичного поглинання виявлено дві характерні плазмонні смуги. Одна з них, розташована в околі 525 нм, пов’язана з електронними коливаннями вздовж поперечного напрямку стержнів. Її положення не залежить од товщини паладієвої оболонки та діелектричної сталої оточуючого середовища. Інша, розташована в околі 800–900 нм, асоціюється з електронними коливаннями в поздовжньому напрямку. Вона зазнає зсуву зі зміною товщини паладієвої оболонки і показника заломлення оточуючого середовища. Наші дослідження вказують на новий можливий шлях керування фотокаталітичною здатністю наностержнів і перспективи їхнього використання в біолого-хімічних сенсорах. 

REFERENCES
  1. Liu H, Ye F, Yao Q, Cao H, Xie J and Yang J, 2014. Stellated Ag-Pt bimetallic nanoparticles: An effective platform for catalytic activity tuning. Sci. Rep. 4: 3669. doi:10.1038/srep03969
  2. Hu G, Nitze F, Gracia-Espino E, Ma J, Barzegar HR, Sharifi T, Jia X, Shchukarev A, Lu L, Ma C and Wagberg T, 2014. Small palladium islands embedded in palladium–tungsten bimetallic nanoparticles form catalytic hotspots for oxygen reduction. Nature Commun. 5: 5253. doi:10.1038/ncomms6253
  3. Liu W J, Qian T T and Jiang H, 2014. Bimetallic Fe nanoparticles: Recent advances in syn-thesis and application in catalytic elimination of environmental pollutants. Chem. Eng. J. 236: 448–463. doi:10.1016/j.cej.2013.10.062
  4. Konig R Y G, Schwarze M, Schomacker R and Stubenrauch C, 2014. Catalytic activity of mono- and bi-metallic nanoparticles synthesized via microemulsions. Catalysts. 4: 256–275. doi:10.3390/catal4030256
  5. Rao V K and Radhakrishnan T P, 2013. Hollow bimetallic nanoparticles generated in situ inside a polymer thin film: Fabrication and catalytic application of silver–palladium–poly (vinyl alcohol). J. Mater. Chem. A. 1: 13612–13618. doi:10.1039/c3ta12807e
  6. Zhang H, Haba M, Okumura M, Akita T, Hashimoto S and Toshima N, 2013. Novel formation of Ag/Au bimetallic nanoparticles by physical mixture of monometallic nanoparticles in dispersions and their application to catalysts for aerobic glucose oxidation. Langmuir. 29: 10330–10339. doi:10.1021/la401878g
  7. Boote B W, Byun H and Kim J H, 2014. Silver-gold bimetallic nanoparticles and their appli-cations as optical materials. J. Nanosci. Nanotechnol. 14: 1563–1577. doi:10.1166/jnn.2014.9077
  8. Adekoya J A, Dare E O, Mesubi M A and Revaprasadu N, 2014. Synthesis and characterization of optically active fractal seed mediated silver nickel bimetallic nanoparticles. J. Mater. 2014: 184216. doi:10.1155/2014/184216
  9. Perez J L J, Fuentes R G, Ramirez J F S, Vidal O U G, Tellez-Sanchez D E, Pacheco Z N C, Orea A C and Garcia J A F, 2013. Nonlinear coefficient determination of Au/Pd bimetallic nanoparticles using Z-scan. Adv. Nanoparticles. 2: 223–228. doi:10.4236/anp.2013.23031
  10. Arquilliere P P, Santini C, Haumesser P H and Aouine M, 2011. Synthesis of copper and cop-per-ruthenium nanoparticles in ionic liquids for the metallization of advanced interconnect structures. ECS Transac. 35: 11–16.
  11. Sachan R, Yadavali S, Shirato N, Krishna H, Ramos V, Duscher G, Pennycook S J, Gangop-adhyay A K, Garcia H and Kalyanaraman R, 2012. Self-organized bimetallic Ag–Co nanopar-ticles with tunable localized surface plasmons showing high environmental stability and sensi-tivity. Nanotechnol. 23: 275604. doi:10.1088/0957-4484/23/27/275604
  12. Hu M, Chen J, Li Z Y, Au L, Hartland G V, Li X, Marquez M and Xia Y, 2006. Gold nanos-tructures: Engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev. 35: 1084–1094. doi:10.1039/b517615h
  13. Dykman L A and Khlebstov N G, 2011. Gold nanoparticles in biology and medicine: Recent advances and prospects. Acta Nature. 3: 34–55.
  14. Gates B C, 2013. Supported gold catalysts: New properties offered by nanometer and sub-nanometer structures. Chem. Commun. 49: 7876–7877. doi:10.1039/c3cc44942d
  15. Zhou X, Xu W, Liu G, Panda D and Chen P, 2010. Size-dependent catalytic activity and dy-namics of gold nanoparticles at the single-molecule level. J. Amer. Chem. Soc. 132: 138–146. doi:10.1021/ja904307n
  16. Zhu Y, Jin R and Sun Y, 2011. Atomically monodisperse gold nanoclusters catalysts with precise core-shell structure. Catalysts. 1: 3–17. doi:10.3390/catal1010003
  17. Ruibin J, 2013. Plasmonic properties of bimetallic nanostructures and their applications in hydrogen sensing and chemical reactions. Dissert. Abs. Inter. 75-06: 1–176.
  18. Hao J and Hui W, 2014. Controlled overgrowth of Pd on Au nanorods. CrystEngComm 16: 9469–9477. doi:10.1039/C4CE00601A
  19. Pradeep T, A textbook of nanoscience and nanotechnology. New York: McGraw Hill (2012).
  20. Sandrock M L, Geiger F M and Foss C A, 1999. Synthesis and second-harmonic generation studies of noncentrosymmetric gold nanostructures. J. Phys. Chem. B. 103: 2668–2673. doi:10.1021/jp9845874
  21. Palik E D, Handbook of optical constants of solids. New York: Academic Press (1991).
(c) Ukrainian Journal of Physical Optics