Home
page
Other articles
in this issue |
Nonlinear optical
parameters of borate glasses with Ag nanoparticles formed using reducing
Gd3+ ions
Dutka R. M., Adamiv V. T., Burak Ya. V., Gamernyk
R. V. and Teslyuk I. M.
Download this
article
Abstract. Basing on experimental absorption spectra and Z-scan
spectra measured in the closed- and open-aperture regimes, we have calculated
the nonlinear optical parameters (the refractive index n2, the
absorption coefficient , and the third-order
susceptibility (3)) of borate
glasses (BGs) Li2B4O7–Gd2O3–Ag2O,
CaB4O7 -Gd2O3-Ag2O
and LiCaBO3-Gd2O3Ag2O that
include Ag nanoparticles (NPs). The Ag NPs have been formed by annealing
the glasses in the air atmosphere at the temperatures close to the glass-transition
ones. We have proven that Gd3+ represents an efficiently reducing ion in
the BGs. We have also ascertained that the plasmon resonance caused by
the presence of Ag NPs increases significantly the nonlinear optical parameters
n2, and│(3)│of
the BGs.
Keywords: borate glasses, Ag nanoparticles,
nonlinear refractive index, third-order nonlinear susceptibility, nonlinear
absorption coefficient
PACS: 61.46.-w, 64.70.ph
UDC: 535.663+535.331
Ukr. J. Phys. Opt.
16 103-110
doi: 10.3116/16091833/16/2/103/2015
Received: 27.04.2015
Анотація. На основі експериментальних
спектрів поглинання та спектрів Z-скану
в режимах із закритою і відкритою діафрагмою
розраховано нелінійно-оптичні параметри
(показник заломлення n2, коефіцієнт
поглинання
і сприйнятність
третього порядку (3))
для боратних стекол Li2B4O7–Gd2O3–Ag2O,
CaB4O7 -Gd2O3-Ag2O
і LiCaBO3-Gd2O3Ag2O з наночастинками
(НЧ) Ag. НЧ Ag було сформовано шляхом відпалу
стекол в атмосфері повітря за температур,
близьких до температур скловання. Доведено,
що йони Gd3+ є ефективними йонами-відновлювачами
в боратних стеклах. Установлено, що зумовлений
НЧ Ag плазмонний резонанс суттєво підвищує
нелінійно-оптичні параметри боратних стекол
n2, і│(3)│. |
|
REFERENCES
-
Ozbay E, 2006. Dimensions plasmonics: Merging photonics and electronics
at nanoscale. Science. 311: 189–193. doi:10.1126/science.1114849
-
Atwater H, Maier S, Polman A, Dionne J and Sweatlock L, 2005. Plasmonics
enables photonic access to the nanoworld. MRS Bull. 30: 385–389. doi:10.1557/mrs2005.277
-
Zayats A and Smolyaninov I, 2003. Near-field photonics: surface plasmon
polaritons and localized surface plasmons. J. Opt. A: Pure Appl. Opt. 5:
S16–S51. doi:10.1088/1464-4258/5/4/353
-
Brongersma M, Zia R and Schuller J, 2007. Plasmonics – the missing link
between nanoelectronics and microphotonics. J. Appl. Phys. 89: 221–223.
doi:10.1007/s00339-007-4151-1
-
Maier S, 2005. Plasmonics – towards subwavelength optical devices. Current
Nanosci. 1: 17–23. doi:10.2174/1573413052953165
-
Perez D. Silver nanoparticles. Vukovar: In-Tech (2010).
-
Red'kov A, 2012. Formation of composite materials based on glasses containing
a reductant. Phys. Sol. State 54: 1875–1881. doi:10.1134/S1063783412090260
-
Obraztsov P, Nashchekin A, Nikonorov N, Sidorov A, Panfilova A and Brunkov
P, 2013. Formation of silver nanoparticles on the silicate glass surface
after ion exchange. Phys. Sol. State. 55: 1180–1186. doi:10.1134/S1063783413060267
-
Inouye H, Tanaka K, Tanahashi I, Hattori T and Nakatsuka H, 2000. Ultrafast
optical switching in a silver nanoparticle system. Jpn. J. Appl. Phys.
39: 5132–5134. doi:10.1143/JJAP.39.5132
-
Wundke K, Pötting S, Auxier J, Schülzgen A, Peyghambarian N and Borrelli
N, 2000. PbS quantum-dot-doped glasses for ultrashort-pulse generation.
Appl. Phys. Lett. 76: 10–13. doi:10.1063/1.125639
-
Bolesta I, Kushnir O, Kolych I, Syvorotka I, Adamiv V, Burak Ya and Teslyuk
I, 2014. AFM investigations and plasmon spectra of silver clusters formed
on Li2B4O7:Ag glass surface in reducing atmosphere. Adv. Sci. Eng. Med.
6: 326–332. doi:10.1166/asem.2014.1498
-
Uchida K, Kaneko S, Omi S, Hata C, Tanji H, Asahara Y, Ikushima A, Tokizaki
T and Nakamuraet A, 1994. Optical nonlinearities of a high concentration
of small metal particles dispersed in glass: copper and silver particles.
J. Opt. Soc. Amer. B. 11: 1236–1243. doi:10.1364/JOSAB.11.001236
-
Adamiv V, Bolesta I, Burak Ya, Gamernyk R, Karbovnyk I, Kolych I, Kovalchuk
M, Kushnir O, Periv M and Teslyuk I, 2014. Nonlinear optical properties
of silver nanoparticles prepared in Ag doped borate glasses. Physica B.
449C: 31–35. doi:10.1016/j.physb.2014.05.009
-
Adamiv V, Bolesta I, Burak Ya, Gamernyk R, Dutka R, Karbovnyk I, Periv
M and Teslyuk I, 2014. Formation and optical properties of silver nanoparticles
in Li2B4O7 – Gd2O3 – Ag2O borate glass. Ukr. J. Phys. 59: 1026–1036.
-
Adamiv V, Bolesta I, Burak Ya, Gamernyk R, Dutka R and Teslyuk I, 2014.
Formation and optical properties of Ag nanoparticles in CaB4O7−Ag2O and
CaB4O7−Gd2O3−Ag2O tetrabo-rate glasses. J. Nano-Electron. Phys. 6:
04033-1–04033-7.
-
Sun Ya, Riggs J, Rollins H and Guduru R, 1999. Strong optical limiting
of silver-containing nanocrystalline particles in stable suspensions. J.
Phys. Chem. B. 103: 77–82. doi:10.1021/jp9835014
-
Staromlynska J, McKay J and Wilson P, 2000. Broadband optical limiting
based on excited state absorption in Pt:ethynyl. J. Appl. Phys. 88: 1726–1733.
doi:10.1063/1.1303054
-
Garcia M, 2011. Surface plasmons in metallic nanoparticles: fundamentals
and applications. J. Phys. D. 44: 283001. doi:10.1088/0022-3727/44/28/283001
-
Adamiv V, Burak Ya, Girnyk I and Teslyuk I, 2013. Thermal properties of
alkaline and alkaline-earth borate glasses. Func. Mater. 20: 52–59.
-
Sheik-Bahae M, Said A and Van Stryland E, 1989. High-sensitivity, single-beam
n2 measurements. Opt. Lett. 14: 955–957. doi:10.1364/OL.14.000955
-
Sheik-Bahae M, Said A, Wei T, Hagan T and Van Stryland D, 1990. Sensitive
measurement of optical nonlinearities using a single beam. J. Quant. Electron.
26: 760–769. doi:10.1109/3.53394
-
Dhanuskodi S, Mohandoss R and Vinitha G, 2014. Preparation and optical
properties of cobalt doped lithium tetraborate nanoparticles. Opt. Mater.
36: 1598–1603. doi:10.1016/j.optmat.2014.04.041
-
Ganeev R, Ryasnyansky A, Stepanov A and Usmanov T, 2004. Nonlinear optical
response of silver and copper nanoparticles in the near-ultraviolet spectral
range. Phys. Sol. State. 46: 351–356. doi:10.1134/1.1649436
-
Reintjes J. Nonlinear-optical parametrical processes in liquids and gases.
Orlando: Academic Press (1984).
-
Rangel-Rojo R, Kosa T, Hajto E, Ewen P, Owen A, Kar A and Wherrett B, 1994.
Near-infrared optical nonlinearities in amorphous chalcogenides. Opt. Commun.
109: 145–150. doi:10.1016/0030-4018(94)90752-8
-
Arnold G, 1975. Near-surface nucleation and crystallization of an ion-implanted
lithia-alumina-silica glass. J. Appl. Phys. 46: 4466–4474. doi:10.1063/1.321422
-
Terashima K, Hashimoto T, Uchino T, Kim S and Yoko T, 1996. Structure and
nonlinear optical properties of Sb2O3-B2O3 binary glass. J. Ceram. Soc.
Jpn. 104: 1008–1014. doi:10.2109/jcersj.104.1008
-
Chen Ch, Wu Y and Li R, 1989. The anionic group theory of the non-linear
optical effect and its applications in the development of new high-quality
NLO crystals in the borate series. Intern. Rev. Phys. Chem. 8: 65–91.
doi:10.1080/01442358909353223
(c) Ukrainian Journal
of Physical Optics |