Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Nonlinear optical parameters of borate glasses with Ag nanoparticles formed using reducing Gd3+ ions

Dutka R. M., Adamiv V. T., Burak Ya. V., Gamernyk R. V. and Teslyuk I. M.

Download this article

Abstract. Basing on experimental absorption spectra and Z-scan spectra measured in the closed- and open-aperture regimes, we have calculated the nonlinear optical parameters (the refractive index n2, the absorption coefficient , and the third-order susceptibility (3)) of borate glasses (BGs) Li2B4O7–Gd2O3–Ag2O, CaB4O7 -Gd2O3-Ag2O and LiCaBO3-Gd2O3Ag2O that include Ag nanoparticles (NPs). The Ag NPs have been formed by annealing the glasses in the air atmosphere at the temperatures close to the glass-transition ones. We have proven that Gd3+ represents an efficiently reducing ion in the BGs. We have also ascertained that the plasmon resonance caused by the presence of Ag NPs increases significantly the nonlinear optical parameters n2, and│(3)│of the BGs.

Keywords: borate glasses, Ag nanoparticles, nonlinear refractive index, third-order nonlinear susceptibility, nonlinear absorption coefficient

PACS: 61.46.-w, 64.70.ph 
UDC: 535.663+535.331
Ukr. J. Phys. Opt. 16 103-110
doi: 10.3116/16091833/16/2/103/2015
Received: 27.04.2015

Анотація. На основі експериментальних спектрів поглинання та спектрів Z-скану в режимах із закритою і відкритою діафрагмою розраховано нелінійно-оптичні параметри (показник заломлення n2, коефіцієнт поглинання і сприйнятність третього порядку (3)) для боратних стекол Li2B4O7–Gd2O3–Ag2O, CaB4O7 -Gd2O3-Ag2O і LiCaBO3-Gd2O3Ag2O з наночастинками (НЧ) Ag. НЧ Ag було сформовано шляхом відпалу стекол в атмосфері повітря за температур, близьких до температур скловання. Доведено, що йони Gd3+ є ефективними йонами-відновлювачами в боратних стеклах. Установлено, що зумовлений НЧ Ag плазмонний резонанс суттєво підвищує нелінійно-оптичні параметри боратних стекол n2, і│(3)│. 

REFERENCES
  1. Ozbay E, 2006. Dimensions plasmonics: Merging photonics and electronics at nanoscale. Science. 311: 189–193. doi:10.1126/science.1114849
  2. Atwater H, Maier S, Polman A, Dionne J and Sweatlock L, 2005. Plasmonics enables photonic access to the nanoworld. MRS Bull. 30: 385–389. doi:10.1557/mrs2005.277
  3. Zayats A and Smolyaninov I, 2003. Near-field photonics: surface plasmon polaritons and localized surface plasmons. J. Opt. A: Pure Appl. Opt. 5: S16–S51. doi:10.1088/1464-4258/5/4/353
  4. Brongersma M, Zia R and Schuller J, 2007. Plasmonics – the missing link between nanoelectronics and microphotonics. J. Appl. Phys. 89: 221–223. doi:10.1007/s00339-007-4151-1
  5. Maier S, 2005. Plasmonics – towards subwavelength optical devices. Current Nanosci. 1: 17–23. doi:10.2174/1573413052953165
  6. Perez D. Silver nanoparticles. Vukovar: In-Tech (2010).
  7. Red'kov A, 2012. Formation of composite materials based on glasses containing a reductant. Phys. Sol. State 54: 1875–1881. doi:10.1134/S1063783412090260
  8. Obraztsov P, Nashchekin A, Nikonorov N, Sidorov A, Panfilova A and Brunkov P, 2013. Formation of silver nanoparticles on the silicate glass surface after ion exchange. Phys. Sol. State. 55: 1180–1186. doi:10.1134/S1063783413060267
  9. Inouye H, Tanaka K, Tanahashi I, Hattori T and Nakatsuka H, 2000. Ultrafast optical switching in a silver nanoparticle system. Jpn. J. Appl. Phys. 39: 5132–5134. doi:10.1143/JJAP.39.5132
  10. Wundke K, Pötting S, Auxier J, Schülzgen A, Peyghambarian N and Borrelli N, 2000. PbS quantum-dot-doped glasses for ultrashort-pulse generation. Appl. Phys. Lett. 76: 10–13. doi:10.1063/1.125639
  11. Bolesta I, Kushnir O, Kolych I, Syvorotka I, Adamiv V, Burak Ya and Teslyuk I, 2014. AFM investigations and plasmon spectra of silver clusters formed on Li2B4O7:Ag glass surface in reducing atmosphere. Adv. Sci. Eng. Med. 6: 326–332. doi:10.1166/asem.2014.1498
  12. Uchida K, Kaneko S, Omi S, Hata C, Tanji H, Asahara Y, Ikushima A, Tokizaki T and Nakamuraet A, 1994. Optical nonlinearities of a high concentration of small metal particles dispersed in glass: copper and silver particles. J. Opt. Soc. Amer. B. 11: 1236–1243. doi:10.1364/JOSAB.11.001236
  13. Adamiv V, Bolesta I, Burak Ya, Gamernyk R, Karbovnyk I, Kolych I, Kovalchuk M, Kushnir O, Periv M and Teslyuk I, 2014. Nonlinear optical properties of silver nanoparticles prepared in Ag doped borate glasses. Physica B. 449C: 31–35. doi:10.1016/j.physb.2014.05.009
  14. Adamiv V, Bolesta I, Burak Ya, Gamernyk R, Dutka R, Karbovnyk I, Periv M and Teslyuk I, 2014. Formation and optical properties of silver nanoparticles in Li2B4O7 – Gd2O3 – Ag2O borate glass. Ukr. J. Phys. 59: 1026–1036.
  15. Adamiv V, Bolesta I, Burak Ya, Gamernyk R, Dutka R and Teslyuk I, 2014. Formation and optical properties of Ag nanoparticles in CaB4O7−Ag2O and CaB4O7−Gd2O3−Ag2O tetrabo-rate glasses. J. Nano-Electron. Phys. 6: 04033-1–04033-7.
  16. Sun Ya, Riggs J, Rollins H and Guduru R, 1999. Strong optical limiting of silver-containing nanocrystalline particles in stable suspensions. J. Phys. Chem. B. 103: 77–82. doi:10.1021/jp9835014
  17. Staromlynska J, McKay J and Wilson P, 2000. Broadband optical limiting based on excited state absorption in Pt:ethynyl. J. Appl. Phys. 88: 1726–1733. doi:10.1063/1.1303054
  18. Garcia M, 2011. Surface plasmons in metallic nanoparticles: fundamentals and applications. J. Phys. D. 44: 283001. doi:10.1088/0022-3727/44/28/283001
  19. Adamiv V, Burak Ya, Girnyk I and Teslyuk I, 2013. Thermal properties of alkaline and alkaline-earth borate glasses. Func. Mater. 20: 52–59.
  20. Sheik-Bahae M, Said A and Van Stryland E, 1989. High-sensitivity, single-beam n2 measurements. Opt. Lett. 14: 955–957. doi:10.1364/OL.14.000955
  21. Sheik-Bahae M, Said A, Wei T, Hagan T and Van Stryland D, 1990. Sensitive measurement of optical nonlinearities using a single beam. J. Quant. Electron. 26: 760–769. doi:10.1109/3.53394
  22. Dhanuskodi S, Mohandoss R and Vinitha G, 2014. Preparation and optical properties of cobalt doped lithium tetraborate nanoparticles. Opt. Mater. 36: 1598–1603. doi:10.1016/j.optmat.2014.04.041
  23. Ganeev R, Ryasnyansky A, Stepanov A and Usmanov T, 2004. Nonlinear optical response of silver and copper nanoparticles in the near-ultraviolet spectral range. Phys. Sol. State. 46: 351–356. doi:10.1134/1.1649436
  24. Reintjes J. Nonlinear-optical parametrical processes in liquids and gases. Orlando: Academic Press (1984).
  25. Rangel-Rojo R, Kosa T, Hajto E, Ewen P, Owen A, Kar A and Wherrett B, 1994. Near-infrared optical nonlinearities in amorphous chalcogenides. Opt. Commun. 109: 145–150. doi:10.1016/0030-4018(94)90752-8
  26. Arnold G, 1975. Near-surface nucleation and crystallization of an ion-implanted lithia-alumina-silica glass. J. Appl. Phys. 46: 4466–4474. doi:10.1063/1.321422
  27. Terashima K, Hashimoto T, Uchino T, Kim S and Yoko T, 1996. Structure and nonlinear optical properties of Sb2O3-B2O3 binary glass. J. Ceram. Soc. Jpn. 104: 1008–1014. doi:10.2109/jcersj.104.1008
  28. Chen Ch, Wu Y and Li R, 1989. The anionic group theory of the non-linear optical effect and its applications in the development of new high-quality NLO crystals in the borate series. Intern. Rev. Phys. Chem. 8: 65–91. doi:10.1080/01442358909353223
(c) Ukrainian Journal of Physical Optics