Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Electro-optic properties of exciplex-type organic electroluminescence devices depending on the technologies of active-layer preparation

Ivaniuk K., Chapran M., Cherpak V., Barylo G., Stakhira P., Hotra Z., Hladun M. and Dudok T.

Download this article

Abstract. We have studied electroluminescence and impedance properties of exciplex-type organic light-emitting devices (OLEDs) based on 4,4,4″ - tris[3- methylphenyl (phenyl)- aminotriphenylamine (m-MTDATA) and 4,7- diphenyl-1,10- phenanthroline (Bphen), which depend on the technologies applied to form active layers of the devices. A comparative analysis of the current–voltage characteristics and impedance spectroscopy of the layered and composite devices have revealed the influence of device technology on the injection of charge carriers in the active layers of OLED structures. We have found a correlation between the negative capacitance observed at low frequencies in the exciplex-type layered OLEDs and the emitting recombination processes. 

Keywords: organic light-emitting devices, exciplex, impedance spectroscopy, negative capacitance

PACS: 72.40.+w
UDC: 621.38
Ukr. J. Phys. Opt. 16 95-102
doi: 10.3116/16091833/16/2/95/2015
Received: 24.04.2015

Анотація.  Досліджено електролюмінісцентні і  імпедансні властивості органічних світлодіодів ексіплексного  типу на основі 4,4,4 "трис [3-метилфеніл (феніл) -амінотрифениламін (м-MTDATA) і 4,7-діфеніл- 1,10-фенантроліна (Bphen), які залежать від використаних технологій при формуванні активних шарів пристроїв. На основі порівняльного аналізу вольт-амперних характеристик і імпедансної спектроскопії пошарових і композиційних пристроїв виявлено вплив технології виготовлення пристрою на інжекцію носіїв заряду в активні шари світлодіодних структур. Встановлена кореляція між негативною ємністю та випромінювальними процесами рекомбінації, яка спостерігається в області низьких частот пошарових органічних світлодіодів ексіплексного типу 

REFERENCES
  1. Adachi C, 2014. Third-generation organic electroluminescence materials. Jpn. J. Appl. Phys. 53: 060101. doi:10.7567/JJAP.53.060101
  2. Wang B, Helander M G, Qiu J, Puzzo D P, Greiner M T, Hudson Z M, Wang S, Liu Z W and Lu Z H, 2011. Unlocking the full potential of organic light-emitting diodes on flexible plastic. Nature Photonics. 5: 753–757. doi:10.1038/nphoton.2011.259
  3. Tseng F M, Cheng A C and Peng Y N, 2009. Assessing market penetration combining scenario analysis, Delphi, and the technological substitution model: The case of the OLED TV market. Technol. Forecast. Soc. Change. 76: 897–909. doi:10.1016/j.techfore.2009.02.003
  4. Cherpak V, Stakhira P, Minaev B, Baryshnikov G, Stromylo E, Helzhynskyy I, Chapran M, Volyniuk D, Hotra Z, Dabuliene A, Tomkeviciene A, Voznyak L and Grazulevicius J V, 2015. Mixing of phosphorescent and exciplex emission in efficient organic electroluminescent devices. ACS Appl. Mater. Interfaces. 7: 1219−1225. doi:10.1021/am507050g
  5. Kalinowski J, Cocchi M, Virgili D and Sabatini C, 2006. Charge photogeneration effect on the exciplex emission from thin organic films. Appl. Phys. Lett. 89: 011105. doi:10.1063/1.2218821
  6. Zhang G, Li W, Chu B, Su Z, Yang D, Yan F, Chen Y, Zhang D, Han L, Wang J, Liu H, Che G, Zhang Z and Hu Z, 2009. Highly efficient photovoltaic diode based organic ultraviolet photodetector and the strong electroluminescence resulting from pure exciplex emission. Organ. Electron. 10: 352–356. doi:10.1016/j.orgel.2008.11.006
  7. Michaleviciute A, Gurskyte E, Volyniuk D, Cherpak V, Sini G, Stakhira P and Grazulevicius J V, 2012. Star-shaped carbazole derivatives for bilayer white organic light-emitting diodes combining emission from both excitons and exciplexes. J. Phys. Chem. 116: 20769−20778. doi:10.1021/jp306824u
  8. Singh S, Mohapatra Y, Qureshi M and Manoharan S, 2005. White organic light-emitting diodes based on spectral broadening in electroluminescence due to formation of interfacial exci-plexes. Appl. Phys. Lett. 86: 113505. doi:10.1063/1.1884255
  9. Goushi K and Adachi C, 2012. Efficient organic light-emitting diodes through up-conversion from triplet to singlet excited states of exciplexes. Appl. Phys. Lett. 101: 023306. doi:10.1063/1.4737006
  10. Graves D, Jankus V, Dias F and Monkman A, 2014. Photophysical investigation of the thermally activated delayed emission from films of m-MTDATA:PBD exciplex. Adv. Funct. Mater. 24: 2343–2351. doi:10.1002/adfm.201303389
  11. Zhang T, Chu B, Li W, Su Z, Peng Q, Zhao B, Luo Y, Jin F, Yan X, Gao Y, Wu H, Zhang F, Fan D and Wang J, 2014. Efficient triplet application in exciplex delayed-fluorescence oleds using a reverse intersystem crossing mechanism based on a δes−t of around zero. ACS Appl. Mater. Interfaces. 6: 11907−11914. doi:10.1021/am501164s
  12. Stakhira P, Cherpak V, Volynyuk D, Ivastchyshyn F, Hotra Z, Tataryn V and Luka G, 2010. Characteristics of organic light emitting diodes with copper iodide as injection layer. Thin Solid Films. 518: 7016–7018. doi:10.1016/j.tsf.2010.06.051
  13. Greenham N, Friend R and Bradley D, 1994. Measuring the efficiency of organic light-emitting devices. Adv. Mater. 6: 491–494. doi:10.1002/adma.19940060612
  14. Cherpak V, Stakhira P, Minaev B, Baryshnikov G, Stromylo E, Helzhynskyy I, Chapran M, Volyniuk D, Tomkuté-Lukšiené D, Malinauskas T, Getautis V,  Tomkeviciene A, Simokaitiene J, and Grazulevicius JV, 2014. Efficient “Warm-White” OLEDs Based on the Phosphorescent bis-Cyclometalated iridium(III) Complex J. Phys. Chem. 118: 11271−11278. doi:10.1021/jp503437b 
  15. Ehrenfreunda E, Lungenschmied C, Dennler G, Neugebauer H and Sariciftci N, 2007. Nega-tive capacitance in organic semiconductor devices: Bipolar injection and charge recombination mechanism. Appl. Phys. Lett. 91: 012112. doi:10.1063/1.2752024
  16. Forero-Lenger S, Gmeiner J, Brutting W and Schwoerer M, 2000. Impedance spectroscopy of polymeric light emitting devices based on different poly (p-phenylene-vinylene) derivatives. Synth. Met. 111–112: 165–168. doi:10.1016/S0379-6779(99)00338-0
  17. Meier M, Karg S and Riess W, 1997. Light-emitting diodes based on poly-p-phenylene-vinylene: II. Impedance spectroscopy. J. Appl. Phys. 82: 1961–1966. doi:10.1063/1.366004
  18. Zhang X W, Xu J W, Xu H R, Wang H, Xie C L, Wei B, Jiang X Y and Zhang Z L, 2013. Elucidation of carrier injection and recombination characteristics with impedance and capacitance in organic light-emitting diodes and the frequency effects. J. Phys. D: Appl. Phys. 46: 055102. doi:10.1088/0022-3727/46/5/055102
(c) Ukrainian Journal of Physical Optics