Home
page
Other articles
in this issue |
An approach to achieve
all-angle, polarization-insensitive and broad-band self-collimation in
2D square-lattice photonic crystals
Noori M., Soroosh M. and Baghban H.
Download this
article
Abstract. We have investigated the possibility for achieving
(in the same structure), an all-angle, polarization-insensitive and broad-band
self-collimation (SC), one of the most urgent requirements in the field
of optical integration. To obtain these attractive SC features in 2D square-array
photonic crystals, we have used several strategies and performed testing
calculations, using plane-wave expansion and finite-difference time-domain
methods. We have not complicated the basic structure for the SC and ensured
its simple geometry. The all-angle SC can arise when the optical material
of a hole-type structure is high-index. Our results have testified that
the SC in the hole-type structure is less dependent on the light polarization,
if compared with a similar rod-type one. Our optimized SC structure has
a bandwidth of Δf/fc = 2.61% and supports the all-angle SC for both TE
and TM polarizations at the expense of small (~ 3o) deviation
of light from the unique collimation direction. Notice that the latter
can be tolerated in many integrated optical devices.
Keywords: self-collimation, photonic crystals,
equal-frequency contours, optical integrated circuits
PACS: 42.82.-m, 42.82.Gw, 42.82.Et, 42.79.Gn
UDC: 621.3
Ukr. J. Phys. Opt.
16 85-94
doi: 10.3116/16091833/16/2/85/2015
Received: 24.12.2014
Анотація. Ми вивчили можливість
одночасного отримання повнокутового, поляризаційно
нечутливого і широкосмугового самоколімування
(СК) на єдиній структурі. Це відповідає
одній із актуальних вимог в галузі оптичного
інтегрування. Для досягнення цих привабливих
рис СК на двовимірних фотонних кристалах
із квадратною матрицею було використано
низку підходів і розрахункові перевірки
на основі методів розкладу за плоскими
хвилями і скінченних різниць часових інтервалів.
Ми не ускладнювали базову структуру для
досягнення СК і зберегли її просту геометрію.
СК з’являється для оптичного матеріалу
в структурі діркового типу з високим показником
заломлення . Наші результати засвідчили,
що СК у структурі діркового типу слабше
залежить від поляризації світла, ніж у
схожій структурі стрижневого типу. Наша
оптимізована структура для СК має ширину
смуги Δf/fc = 2,61% і підтримує повнокутове
СК для обох поляризації TE і TM коштом незначного
(~ 3o) відхилення світла від єдиного
напрямку колімування. Останній недолік
не є суттєвим для інтегрованих оптичних
пристроїв. |
|
REFERENCES
-
Chigrin D N, Torres S and Tayeb G, 2003. Self-guiding in two-dimensional
photonic crystals. Opt. Express. 11: 1203–1211. doi:10.1364/OE.11.001203
-
Hamam R E, Johnson S G, Joannopoulos J D and Soljacic M, 2009. Broadband
super-collimation in a hybrid photonic crystal structure. Opt. Express.
17: 8109–8118. doi:10.1364/OE.17.008109
-
Shuai F and Yi-Quan W, 2011. Light propagation properties of two-dimensional
photonic crystal channel filters with elliptical micro-cavities. Chinese
Phys. B. 20: 104207. doi:10.1088/1674-1056/20/10/104207
-
Prather D W, Sharkawy A, McBride S, Zanzucchi P, Chen C, Pustai D, Venkataraman
S, Mura-kowski J and Schneider G, 2003. Dispersion engineering of photonic
crystals. Proc. SPIE. 5184: 30–40. doi:10.1117/12.504651
-
Jovanovic D, Gajic R, and Hingerl K, 2008. Refraction and band isotropy
in 2D square-like Archi-medean photonic crystal lattices. Opt. Express.
16: 4048-4058. doi:10.1364/OE.16.004048
-
Notomi M, 2000. Theory of light propagation in strongly modulated photonic
crystals: Refraction like behavior in the vicinity of the photonic band
gap. Phys. Rev. B. 62: 10696–10705. doi:10.1103/PhysRevB.62.10696
-
Gajic R, Kuchar F and K. Hingerl, 2006. All-angle left-handed negative
refraction in Kagomé and honeycomb lattice photonic crystals. Phys. Rev.
B. 73: 165310-17. doi:10.1103/PhysRevB.73.165310
-
Gaji ć R, Kuchar F, Jovanović D and Hingerl K, 2007. Negative refraction
and left-handedness in 2D Archimedean lattice photonic crystals. Mater.
Sci. Forum. 555: 83–88.
-
Wu L J, Karle T and Krauss T F, 2002. Super-prism phenomena in planar photonic
crystals. IEEE J. Quant. Electron. 38: 915–918. doi:10.1109/JQE.2002.1017607
-
Akosman A E, Kurt H and Ozbay E, 2011. Compact wavelength de-multiplexer
design using slow light regime of photonic crystal waveguides. Opt. Express.
19: 24129–24138. doi:10.1364/OE.19.024129
-
Wu Z H, Yang H J, Jiang P and He X J, 2012. All-angle self-collimation
in two-dimensional rhombic-lattice photonic crystals. J. Opt. 14: 015002.
doi:10.1088/2040-8978/14/1/015002
-
Shih T M, Dahelm M, Petrich G, Soljaˇci’c M, Ippen E, Kolodziejski L,
Hall K and Kesler M, 2008. Supercollimation in photonic crystals composed
of silicon rods. Appl. Phys. Lett. 93: 131111. doi:10.1063/1.2992198
-
Shuai C F, Zhong W and Quan W Y, 2012. Controlling the self-collimation
characteristics of a near-infrared two-dimensional metallic photonic crystal.
Chin. Phys. B. 21: 114212. doi:10.1088/1674-1056/21/11/114212
-
Jiang W L and Li X, 2013. Polarization-insensitive and broad-angle self-collimation
in a two-dimensional photonic crystal with rectangular air holes. Appl.
Opt. 52: 6676–6684. doi:10.1364/AO.52.006676
-
Liang W Y, Yin C P, Dong J W, Leng F C and Wang H Z, 2010. Super-broadband
non-diffraction guiding modes in photonic crystals with elliptical rods.
J. Phys. D: Appl. Phys. 43: 075103. doi:10.1088/0022-3727/43/7/075103
-
Kim M W, Kim T T, Kim J E, Park H Y and Kee C S, 2007. Experimental demonstration
of bend-ing and splitting of self-collimated beams in two-dimensional photonic
crystals. Appl. Phys. Lett, 90: 1131211-3. doi:10.1063/1.2713859
-
Wu L J and Krauss T F, 2003. Beam steering in planar-photonic crystals:
from superprism to su-percollimator. J. Lightwave Technol. 21: 561–566.
doi:10.1109/JLT.2003.808773
-
Kosaka H, Tomita A, Notomi M, Tamamura T, Sato T and Kawakami S, 1999.
Self-collimating phenomena in photonic crystals. Appl. Phys. Lett. 74:
1212–1214. doi:10.1063/1.123502
-
Xu X Q and Yang H, 2010. Optimize design super collimation in square lattice
two-dimensional photonic crystals. Optik – Int. J. Light Elect. Opt.
121: 1573–1576. doi:10.1016/j.ijleo.2009.02.027
-
Gao D, Zhou Z and Citrin D S, 2008. Self-collimated waveguide bends and
partial bandgap reflec-tion of photonic crystals with parallelogram lattice.
J. Opt. Soc. Amer. A. 25: 791–795. doi:10.1364/JOSAA.25.000791
-
Prather D W, Shi S, Miao B, Pustai D M, Venkataraman S, Sharkawy A S, Schneider
G J and Mu-rakowski J A, 2004. Ultralow-loss photonic crystal waveguides
based on the self-collimation effect. Photonic Crystal Materials and Devices
II, SPIE. 5360: 175. doi:10.1117/12.518370
-
Hou G. J, Wu H M and Zhou Z P, 2009. Polarization insensitive self-collimation
waveguide in square lattice annular photonic crystals. Opt. Commun. 282:
3172–3176. doi:10.1016/j.optcom.2009.04.051
-
Xu C Y, Lan S, Guo Q, Hu W and Wu L J, 2008. The all-angle self-collimating
phenomenon in photonic crystals with rectangular symmetry. J. Opt. A. 10:
085201. doi:10.1088/1464-4258/10/8/085201
-
Matthews A F, 2009. Experimental demonstration of self-collimation beaming
and splitting in photonic crystals at microwave frequencies. Opt. Commun.
282: 1789–1792. doi:10.1016/j.optcom.2009.01.010
-
Zhang Z Y and Li B, 2007. Optical switches and logic gates based on self-collimated
beams in two-dimensional photonic crystals. Opt. Express. 15: 9287–9292.
doi:10.1364/OE.15.009287
-
Zheng W G, Zhao D, Zhang W and Liu Y, 2014. Wavelength-division multiplexing
system with photonic crystal self-collimation and co- directional coupling
effect. Optik – Int.J. Light Elect. Opt., 125: 2638– 2641. doi:10.1016/j.ijleo.2013.11.034
-
Wang W Y, Xue Q and Zheng W, 2012. Photonic crystal self-collimation sensor.
Opt. Express. 20: 12111–12118. doi:10.1364/OE.20.012111
-
Chen X Y, Qiu Y S, Wang Y F and Ni B, 2008. Tunable photonic crystal Mach-Zehnder
interferometer based on self-collimation effect. Chinese Phys. Lett. 25:
4307–4310. doi:10.1088/0256-307X/25/12/034
-
Zhang W, Liu J, Huang W P and Zhao W, 2009. Self-collimating photonic-crystal
wave plates. Opt. Lett. 34: 2676–2678. doi:10.1364/OL.34.002676
-
Iliew R, Etrich C, Pertsch T, Lederer F and Staliunas K, 2008. Subdiffractive
all-photonic crystal Fabry-Perot resonators. Opt. Lett. 33: 2695–2697.
doi:10.1364/OL.33.002695
-
Xiao-Peng S, Kui H, Fang Y, Peng L H, Yu Z Z and Qi Z, 2008. New configuration
of ring resonator in photonic crystal based on self-collimation. Chinese
Phys. Lett. 25: 4288. doi:10.1088/0256-307X/25/12/029
-
Christina X S, 2012. Design of optical logic gates using self-collimated
beams in 2D photonic crystal. Photon. Sens. 2: 173–179. doi:10.1007/s13320-012-0054-7
-
Lin W P and Kuo H L, 2012. Design of optical nor logic gates using two
dimension photonic crys-tals. Amer. J. Mod. Phys. 2: 144–147. doi:10.11648/j.ajmp.20130203.18
-
Rumpf R C, 2013. Optimization of planar self-collimating photonic crystals.
J. Opt. Soc. Amer. A. 30: 1297–1304. doi:10.1364/JOSAA.30.001297
-
Lawrence F J, Dossou K B and de Sterke C M, 2008. Antireflection coatings
for two-dimensional photonic crystals using a rigorous impedance definition.
Appl. Phys. Lett. 93: 131111. doi:10.1063/1.2992066
-
Park J M, Park H R and Lee M H, 2010. Self-collimating photonic crystal
antireflection structure for both TE and TM polarizations. Opt. Express.
18: 13083–13093. doi:10.1364/OE.18.013083
-
Chuang Y C, 2010. Complex rhombus lattice photonic crystals for broadband
all-angle self-collimation J. Opt. 12: 035102. doi:10.1088/2040-8978/12/3/035102
-
Zhang C H, Chen L, Zhu H, Qian L and Fan D, 2010. Full-angle collimations
of two-dimensional photonic crystals with ultrahigh-index background materials.
J. Opt. 12: 045103–045108. doi:10.1088/2040-8978/12/4/045103
-
Xu C Y, Lan S, Dai Q F, Guo Q and Wu L J, 2009. Polarization-independent
self-collimation based on pill-void photonic crystals with square symmetry.
Opt. Express. 17: 4903-12. doi:10.1364/OE.17.004903
-
Shen X P, Shen Y F, Li H P, Xiao Z W and Zheng J, 2006. Self-collimation
of unpolarized elec-tromagnetic waves in 2D photonic crystals. Acta Phys.
Sin. 55: 2760–2764.
-
Cicek U A, 2009. Polarization-independent waveguiding with annular photonic
crystal. Opt. Ex-press. 17:18381–18386. doi:10.1364/OE.17.018381
-
Zabelin D V, Thomas N L, Houdr’e R, Kotlyar M V, O'Faolin L and Krauss
T F, 2007. Self-collimating photonic crystal polarization beam splitter.
Opt. Lett. 32: 530–532. doi:10.1364/OL.32.000530
-
Turduev G M and Kurt H, 2012. Modified annular photonic crystals with enhanced
dispersion rela-tions: polarization insensitive self-collimation and nanophotonic
wire waveguide designs. J. Opt. Soc. Amer. B. 29: 1589–1598. doi:10.1364/JOSAB.29.001589
-
Jiang L Y and Li X Y, 2014. Study on the polarization-insensitive self-collimation
behavior in two-dimensional all-solid photonic crystals. J. Opt. 43: 108–116.
doi:10.1007/s12596-014-0181-1
-
Witzens L J and Scherer A, 2002. Self-collimation in planar photonic crystals.
IEEE J. Selected Topics In Quantum Electron. 8: 1246–1257. doi:10.1109/JSTQE.2002.806693
-
Ogawa O Y and Iida Y, 2005. Study on self-collimated light-focusing device
using the 2-D photonic crystal with a parallelogram lattice. J. Lightwave
Technol. 23: 4374. doi:10.1109/JLT.2005.859431
-
Jiang W L and Li X, 2013. Polarization-insensitive and broad-angle self-collimation
in a two-dimensional photonic crystal with rectangular air holes. Appl.
Opt. 52: 6676–6684. doi:10.1364/AO.52.006676
-
Guo S and Albin S, 2003. Simple plane wave implementation for photonic
crystal calculations. Opt. Express. 11: 167–175. doi:10.1364/OE.11.000167
-
Rumpf R C, 2013. Optimization of planar self-collimating photonic crystals.
J. Opt. Soc. Amer. A. 30: 1297–1304. doi:10.1364/JOSAA.30.001297
-
Taflove A, and Hagness S C, Computational electrodynamics: the finite difference
time domain method (Artech House, Inc., 2000).
-
Yee K S, 1966. Numerical solution of initial boundary value problems involving
Maxwell's equations in isotropic media. IEEE Trans. Antennas and Propagation.
14: 302. doi:10.1109/TAP.1966.1138693
(c) Ukrainian Journal
of Physical Optics |