Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
An approach to achieve all-angle, polarization-insensitive and broad-band self-collimation in 2D square-lattice photonic crystals

Noori M., Soroosh M. and Baghban H.

Download this article

Abstract. We have investigated the possibility for achieving (in the same structure), an all-angle, polarization-insensitive and broad-band self-collimation (SC), one of the most urgent requirements in the field of optical integration. To obtain these attractive SC features in 2D square-array photonic crystals, we have used several strategies and performed testing calculations, using plane-wave expansion and finite-difference time-domain methods. We have not complicated the basic structure for the SC and ensured its simple geometry. The all-angle SC can arise when the optical material of a hole-type structure is high-index. Our results have testified that the SC in the hole-type structure is less dependent on the light polarization, if compared with a similar rod-type one. Our optimized SC structure has a bandwidth of Δf/fc = 2.61% and supports the all-angle SC for both TE and TM polarizations at the expense of small (~ 3o) deviation of light from the unique collimation direction. Notice that the latter can be tolerated in many integrated optical devices. 

Keywords: self-collimation, photonic crystals, equal-frequency contours, optical integrated circuits

PACS: 42.82.-m, 42.82.Gw, 42.82.Et, 42.79.Gn
UDC: 621.3
Ukr. J. Phys. Opt. 16 85-94
doi: 10.3116/16091833/16/2/85/2015
Received: 24.12.2014

Анотація.  Ми вивчили можливість одночасного отримання повнокутового, поляризаційно нечутливого і широкосмугового самоколімування (СК) на єдиній структурі. Це відповідає одній із актуальних вимог в галузі оптичного інтегрування. Для досягнення цих привабливих рис СК на двовимірних фотонних кристалах із квадратною матрицею було використано низку підходів і розрахункові перевірки на основі  методів розкладу за плоскими хвилями і скінченних різниць часових інтервалів. Ми не ускладнювали базову структуру для досягнення СК і зберегли її просту геометрію. СК з’являється для оптичного матеріалу в структурі діркового типу з високим показником заломлення . Наші результати засвідчили, що СК у структурі діркового типу слабше залежить від поляризації світла, ніж у схожій структурі стрижневого типу. Наша оптимізована структура для СК має ширину смуги Δf/fc = 2,61% і підтримує повнокутове СК для обох поляризації TE і TM коштом незначного (~ 3o) відхилення світла від єдиного напрямку колімування. Останній недолік не є суттєвим для інтегрованих оптичних пристроїв. 

REFERENCES
  1. Chigrin D N, Torres S and Tayeb G, 2003. Self-guiding in two-dimensional photonic crystals. Opt. Express. 11: 1203–1211. doi:10.1364/OE.11.001203
  2. Hamam R E, Johnson S G, Joannopoulos J D and Soljacic M, 2009. Broadband super-collimation in a hybrid photonic crystal structure. Opt. Express. 17: 8109–8118. doi:10.1364/OE.17.008109
  3. Shuai F and Yi-Quan W, 2011. Light propagation properties of two-dimensional photonic crystal channel filters with elliptical micro-cavities. Chinese Phys. B. 20: 104207. doi:10.1088/1674-1056/20/10/104207
  4. Prather D W, Sharkawy A, McBride S, Zanzucchi P, Chen C, Pustai D, Venkataraman S, Mura-kowski J and Schneider G, 2003. Dispersion engineering of photonic crystals. Proc. SPIE. 5184: 30–40. doi:10.1117/12.504651
  5. Jovanovic D, Gajic R, and Hingerl K, 2008. Refraction and band isotropy in 2D square-like Archi-medean photonic crystal lattices. Opt. Express. 16: 4048-4058. doi:10.1364/OE.16.004048
  6. Notomi M, 2000. Theory of light propagation in strongly modulated photonic crystals: Refraction like behavior in the vicinity of the photonic band gap. Phys. Rev. B. 62: 10696–10705. doi:10.1103/PhysRevB.62.10696
  7. Gajic R, Kuchar F and K. Hingerl, 2006. All-angle left-handed negative refraction in Kagomé and honeycomb lattice photonic crystals. Phys. Rev. B. 73: 165310-17. doi:10.1103/PhysRevB.73.165310
  8. Gaji ć R, Kuchar F, Jovanović D and Hingerl K, 2007. Negative refraction and left-handedness in 2D Archimedean lattice photonic crystals. Mater. Sci. Forum. 555: 83–88.
  9. Wu L J, Karle T and Krauss T F, 2002. Super-prism phenomena in planar photonic crystals. IEEE J. Quant. Electron. 38: 915–918. doi:10.1109/JQE.2002.1017607
  10. Akosman A E, Kurt H and Ozbay E, 2011. Compact wavelength de-multiplexer design using slow light regime of photonic crystal waveguides. Opt. Express. 19: 24129–24138. doi:10.1364/OE.19.024129
  11. Wu Z H, Yang H J, Jiang P and He X J, 2012. All-angle self-collimation in two-dimensional rhombic-lattice photonic crystals. J. Opt. 14: 015002. doi:10.1088/2040-8978/14/1/015002
  12. Shih T M, Dahelm M, Petrich G, Soljaˇci’c M, Ippen E, Kolodziejski L, Hall K and Kesler M, 2008. Supercollimation in photonic crystals composed of silicon rods. Appl. Phys. Lett. 93: 131111. doi:10.1063/1.2992198
  13. Shuai C F, Zhong W and Quan W Y, 2012. Controlling the self-collimation characteristics of a near-infrared two-dimensional metallic photonic crystal. Chin. Phys. B. 21: 114212. doi:10.1088/1674-1056/21/11/114212
  14. Jiang W L and Li X, 2013. Polarization-insensitive and broad-angle self-collimation in a two-dimensional photonic crystal with rectangular air holes. Appl. Opt. 52: 6676–6684. doi:10.1364/AO.52.006676
  15. Liang W Y, Yin C P, Dong J W, Leng F C and Wang H Z, 2010. Super-broadband non-diffraction guiding modes in photonic crystals with elliptical rods. J. Phys. D: Appl. Phys. 43: 075103. doi:10.1088/0022-3727/43/7/075103
  16. Kim M W, Kim T T, Kim J E, Park H Y and Kee C S, 2007. Experimental demonstration of bend-ing and splitting of self-collimated beams in two-dimensional photonic crystals. Appl. Phys. Lett, 90: 1131211-3. doi:10.1063/1.2713859
  17. Wu L J and Krauss T F, 2003. Beam steering in planar-photonic crystals: from superprism to su-percollimator. J. Lightwave Technol. 21: 561–566. doi:10.1109/JLT.2003.808773
  18. Kosaka H, Tomita A, Notomi M, Tamamura T, Sato T and Kawakami S, 1999. Self-collimating phenomena in photonic crystals. Appl. Phys. Lett. 74: 1212–1214. doi:10.1063/1.123502
  19. Xu X Q and Yang H, 2010. Optimize design super collimation in square lattice two-dimensional photonic crystals. Optik – Int. J. Light Elect. Opt. 121: 1573–1576. doi:10.1016/j.ijleo.2009.02.027
  20. Gao D, Zhou Z and Citrin D S, 2008. Self-collimated waveguide bends and partial bandgap reflec-tion of photonic crystals with parallelogram lattice. J. Opt. Soc. Amer. A. 25: 791–795. doi:10.1364/JOSAA.25.000791
  21. Prather D W, Shi S, Miao B, Pustai D M, Venkataraman S, Sharkawy A S, Schneider G J and Mu-rakowski J A, 2004. Ultralow-loss photonic crystal waveguides based on the self-collimation effect. Photonic Crystal Materials and Devices II, SPIE. 5360: 175. doi:10.1117/12.518370
  22. Hou G. J, Wu H M and Zhou Z P, 2009. Polarization insensitive self-collimation waveguide in square lattice annular photonic crystals. Opt. Commun. 282: 3172–3176. doi:10.1016/j.optcom.2009.04.051
  23. Xu C Y, Lan S, Guo Q, Hu W and Wu L J, 2008. The all-angle self-collimating phenomenon in photonic crystals with rectangular symmetry. J. Opt. A. 10: 085201. doi:10.1088/1464-4258/10/8/085201
  24. Matthews A F, 2009. Experimental demonstration of self-collimation beaming and splitting in photonic crystals at microwave frequencies. Opt. Commun. 282: 1789–1792. doi:10.1016/j.optcom.2009.01.010
  25. Zhang Z Y and Li B, 2007. Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals. Opt. Express. 15: 9287–9292. doi:10.1364/OE.15.009287
  26. Zheng W G, Zhao D, Zhang W and Liu Y, 2014. Wavelength-division multiplexing system with photonic crystal self-collimation and co- directional coupling effect. Optik – Int.J. Light Elect. Opt., 125: 2638– 2641. doi:10.1016/j.ijleo.2013.11.034
  27. Wang W Y, Xue Q and Zheng W, 2012. Photonic crystal self-collimation sensor. Opt. Express. 20: 12111–12118. doi:10.1364/OE.20.012111
  28. Chen X Y, Qiu Y S, Wang Y F and Ni B, 2008. Tunable photonic crystal Mach-Zehnder interferometer based on self-collimation effect. Chinese Phys. Lett. 25: 4307–4310. doi:10.1088/0256-307X/25/12/034
  29. Zhang W, Liu J, Huang W P and Zhao W, 2009. Self-collimating photonic-crystal wave plates. Opt. Lett. 34: 2676–2678. doi:10.1364/OL.34.002676
  30. Iliew R, Etrich C, Pertsch T, Lederer F and Staliunas K, 2008. Subdiffractive all-photonic crystal Fabry-Perot resonators. Opt. Lett. 33: 2695–2697. doi:10.1364/OL.33.002695
  31. Xiao-Peng S, Kui H, Fang Y, Peng L H, Yu Z Z and Qi Z, 2008. New configuration of ring resonator in photonic crystal based on self-collimation. Chinese Phys. Lett. 25: 4288. doi:10.1088/0256-307X/25/12/029
  32. Christina X S, 2012. Design of optical logic gates using self-collimated beams in 2D photonic crystal. Photon. Sens. 2: 173–179. doi:10.1007/s13320-012-0054-7
  33. Lin W P and Kuo H L, 2012. Design of optical nor logic gates using two dimension photonic crys-tals. Amer. J. Mod. Phys. 2: 144–147. doi:10.11648/j.ajmp.20130203.18
  34. Rumpf R C, 2013. Optimization of planar self-collimating photonic crystals. J. Opt. Soc. Amer. A. 30: 1297–1304. doi:10.1364/JOSAA.30.001297
  35. Lawrence F J, Dossou K B and de Sterke C M, 2008. Antireflection coatings for two-dimensional photonic crystals using a rigorous impedance definition. Appl. Phys. Lett. 93: 131111. doi:10.1063/1.2992066
  36. Park J M, Park H R and Lee M H, 2010. Self-collimating photonic crystal antireflection structure for both TE and TM polarizations. Opt. Express. 18: 13083–13093. doi:10.1364/OE.18.013083
  37. Chuang Y C, 2010. Complex rhombus lattice photonic crystals for broadband all-angle self-collimation J. Opt. 12: 035102. doi:10.1088/2040-8978/12/3/035102
  38. Zhang C H, Chen L, Zhu H, Qian L and Fan D, 2010. Full-angle collimations of two-dimensional photonic crystals with ultrahigh-index background materials. J. Opt. 12: 045103–045108. doi:10.1088/2040-8978/12/4/045103
  39. Xu C Y, Lan S, Dai Q F, Guo Q and Wu L J, 2009. Polarization-independent self-collimation based on pill-void photonic crystals with square symmetry. Opt. Express. 17: 4903-12. doi:10.1364/OE.17.004903
  40. Shen X P, Shen Y F, Li H P, Xiao Z W and Zheng J, 2006. Self-collimation of unpolarized elec-tromagnetic waves in 2D photonic crystals. Acta Phys. Sin. 55: 2760–2764.
  41. Cicek U A, 2009. Polarization-independent waveguiding with annular photonic crystal. Opt. Ex-press. 17:18381–18386. doi:10.1364/OE.17.018381
  42. Zabelin D V, Thomas N L, Houdr’e R, Kotlyar M V, O'Faolin L and Krauss T F, 2007. Self-collimating photonic crystal polarization beam splitter. Opt. Lett. 32: 530–532. doi:10.1364/OL.32.000530
  43. Turduev G M and Kurt H, 2012. Modified annular photonic crystals with enhanced dispersion rela-tions: polarization insensitive self-collimation and nanophotonic wire waveguide designs. J. Opt. Soc. Amer. B. 29: 1589–1598. doi:10.1364/JOSAB.29.001589
  44. Jiang L Y and Li X Y, 2014. Study on the polarization-insensitive self-collimation behavior in two-dimensional all-solid photonic crystals. J. Opt. 43: 108–116. doi:10.1007/s12596-014-0181-1
  45. Witzens L J and Scherer A, 2002. Self-collimation in planar photonic crystals. IEEE J. Selected Topics In Quantum Electron. 8: 1246–1257. doi:10.1109/JSTQE.2002.806693
  46. Ogawa O Y and Iida Y, 2005. Study on self-collimated light-focusing device using the 2-D photonic crystal with a parallelogram lattice. J. Lightwave Technol. 23: 4374. doi:10.1109/JLT.2005.859431
  47. Jiang W L and Li X, 2013. Polarization-insensitive and broad-angle self-collimation in a two-dimensional photonic crystal with rectangular air holes. Appl. Opt. 52: 6676–6684. doi:10.1364/AO.52.006676
  48. Guo S and Albin S, 2003. Simple plane wave implementation for photonic crystal calculations. Opt. Express. 11: 167–175. doi:10.1364/OE.11.000167
  49. Rumpf R C, 2013. Optimization of planar self-collimating photonic crystals. J. Opt. Soc. Amer. A. 30: 1297–1304. doi:10.1364/JOSAA.30.001297
  50. Taflove A, and Hagness S C, Computational electrodynamics: the finite difference time domain method (Artech House, Inc., 2000).
  51. Yee K S, 1966. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans. Antennas and Propagation. 14: 302. doi:10.1109/TAP.1966.1138693
(c) Ukrainian Journal of Physical Optics