Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Acoustic anisotropy of AgGaGe3Se8 crystals and their acoustooptic applications

Martynyuk-Lototska I., Kushnirevych M., Myronchuk G. L., Parasyuk O. and Vlokh R.

Download this article

Abstract. We present the studies of anisotropy of acoustic wave (AW) propagation in AgGaGe3Se8 crystals. Complete matrices of mechanical stiffness and compliance coefficients are determined basing on the experimental values of AW velocities. Cross sections of AW velocity surfaces by the principal crystallographic planes are obtained. We have found that the velocities of quasi-transverse and quasi-longitudinal AWs propagating in the AgGaGe3Se8 crystals can be very low, thus facilitating potentially high acoustooptic figures of merit.

Keywords: acoustooptics, chalcogenide crystals, acoustic wave velocities, elastic properties

PACS: 42.79.Jq, 43.35.Sx
UDC: 535.012.2+535.42+534.321.9
Ukr. J. Phys. Opt. 16 77-84
doi: 10.3116/16091833/16/2/77/2015
Received: 20.03.2015

Анотація.  У роботі представлено результати досліджень анізотропії поширення акустичних хвиль у кристалах AgGaGe3Se8. На основі експериментального вивчення швидкостей поширення акустичних хвиль визначено повні матриці коефіцієнтів жорсткості і податливості цих кристалів. Побудовано перетини поверхонь швидкостей акустичних хвиль головними кристалографічними площинами. Виявлено, що швидкості поширення квазі-поперечних і квазі-поздовжніх акустичних хвиль сягають низьких значень, що повинно привести до великих коефіцієнтів акустооптичної якості кристалів AgGaGe3Se8

REFERENCES
  1. Gottlieb M and Roland G W, 1980. Infrared acousto-optic materials: applications, requirements, and crystal development. Opt. Eng. 19: 196901. doi:10.1117/12.7972632
  2. Voloshinov V B, Knyazev G A, Kulakova L A and Gupta N, 2013. Acousto-optic control of light beams in the infrared range. Phys. Wave Phenom. 21: 134–138. doi:10.3103/S1541308X13020052
  3. Nevejans D, Neefs E, Van Ransbeeck E, Berkenbosch S, Clairquin R, De Vos L, Moelans W, Glorieux S, Baeke A, Korablev O, Vinogradov I, Kalinnikov Y, Bach B, Dubois J-P and Villard E, 2006. Compact high-resolution spaceborne echelle grating spectrometer with acousto-optical tunable filter based order sorting for the infrared domain from 2.2 to 4.3 µm. Appl. Opt. 45: 5191–5206. doi:10.1364/AO.45.005191
  4. Zalesskaya G A, Yakovlev D L, Khodin M V, Baranovskii D I, Sambor E G and Vas'kov O S, 1996. Use of dispersion filters for acoustooptical determination of gase concentration. J. Appl. Spectr. 63: 271–275. doi:10.1007/BF02606738
  5. http://www.mt-berlin.com/frames_ao/acousto_frames.htm
  6. Singh N B and Duval W M B, 1991. Growth kinetics of physical vapour transport processes: Crystal growth of opto-electronic material mercurous chloride. NASA Techn. Memorandum. 103788.
  7. Kaidan M V, Zadorozhna A V, Andrushchak A S and Kityk A V, 2002. Photoelastic and acoustooptical properties of Cs2HgCl4 crystals. Appl. Opt. 41: 5341–5345. doi:10.1364/AO.41.005341
  8. Kaidan M V, Zadorozhna A V, Andrushchak A S and Kityk A V, 2003. Cs2HgCl4 crystal as a new material for acoustooptical applications. Opt. Mater. 22: 263–268. doi:10.1016/S0925-3467(02)00286-0
  9. Gottlieb W, Isaacs T J, Feichtner J D and Roland G W, 1974. Acousto-optic properties of some chalcogenide crystals. J. Appl. Phys. 45: 5145–5151. doi:10.1063/1.1663207
  10. Mys O, Kostyrko M, Smyk M, Krupych O and Vlokh R, 2014. Anisotropy of acoustooptic figure of merit in optically isotropic media. Appl. Opt. 53: 4616–4627. doi:10.1364/AO.53.004616
  11. Knuteson D J, Singh N B, Kanner G, Berghmans A, Wagner B, Kahler D, McLaughlin S, Suhre D and Gottlieb M, 2010. Quaternary AgGaGenSe2(n+1) crystals for NLO applications. J. Cryst. Growth. 312: 1114–1117. doi:10.1016/j.jcrysgro.2009.10.051
  12. Olekseyuk I D, Gorgut G E and Parasyuk O V, 1997. The phase equilibria in the quasi-ternary Ag2Se-Ga2Se3-GeSe2 system. J. All. Comp. 260: 111–120. doi:10.1016/S0925-8388(97)00166-7
  13. V Badikov, K Mitin, F Noack, V Panyutin, V Petrov, A Seryogin and G Shevyrdyaeva, 2009. Orthorhombic nonlinear crystals of AgxGaxGe1–xSe2 for the mid-infrared spectral range. Opt. Mat. 31: 590–597. doi:10.1016/j.optmat.2008.06.015
  14. Reshak A H, Parasyuk O V, Fedorchuk A O, Kamarudin H, Auluck S and Chyský J, 2013. Optical spectra and band structure of AgxGaxGe1–xSe2 (x = 0.333, 0.250, 0.200, 0.167) single crystals: Experiment and theory J. Phys. Chem. B. 117: 15220−15231. doi:10.1021/jp410786w
  15. Davidyuk G E, Yurchenko O N, Parasyuk O V, Sachanyuk V P, Pankevich V Z and Shavarova A P, 2008. Effect of doping with transition and rare-earth metals on the electrical and optical properties of AgGaGe3Se8 single crystals. Inorg. Mat. 44: 361–365. doi:10.1134/S0020168508040067
  16. Al-Harbi E, Wojciechowski A, AlZayed N, Parasyuk O V, Gondek E, Armaty P, El-Naggar A M, Kityk I V and Karasinski P, 2013. IR laser induced spectral kinetics of AgGaGe3Se8:Cu chalcogenide crystals. Spectrochim. Acta A. 111: 142–149. doi:10.1016/j.saa.2013.03.054
  17. Parasyuk O V, Fedorchuk A O, Gorgut G P, Khyzhun O Y, Wojciechowski A and Kityk I V, 2012. Crystal growth, electron structure and photo induced optical changes in novel AgxGaxGe1–xSe2 (x = 0.333, 0.250, 0.200, 0.167) crystals. Opt. Mat. 35: 65–73. doi:10.1016/j.optmat.2012.07.002
  18. Kityk I V, Fedorchuk A O, Rakus P, Ebothe J, AlZayed N, Alqarni S A N, El-Naggar A M and Parasyuk O V, 2013. Photoinduced anisotropy in theAgGaGe3Se8:Cu chalcogenide crystals. Mat. Lett. 107: 218–220. doi:10.1016/j.matlet.2013.06.011
  19. Kityk I V, AlZayed N, Rakus P, AlOtaibe A A, El-Naggar A M and Parasyuk O V, 2013. Laser-induced piezoelectric effects in chalcogenide crystals. Physica B. 423: 60–63. doi:10.1016/j.physb.2013.04.043
  20. Davydyuk G Ye, Myronchuk G L, Lakshminarayana G, Yakymchuk O V, Reshak A H, Wojciechowski A, Rakus P, AlZayed N, Chmiel M, Kityk I V and Parasyuk O V, 2012. IR-induced features of AgGaGeS4 crystalline semiconductors. J. Phys. Chem. Sol. 73: 439–443. doi:10.1016/j.jpcs.2011.11.026
  21. Bekenev V L, Bozhko V V, Parasyuk O V, Davydyuk G E, Bulatetska L V, Fedorchuk A O, Kityk I V and Khyzhun O Y, 2012. Electronic structure of non-centrosymmetric AgCd2GaS4 and AgCd2GaSe4 single crystals. J. Elect. Spectr. Rel. Phenom. 185: 559–566. doi:10.1016/j.elspec.2012.11.014
  22. Shaskolskaya M P, Acoustic crystals. Moscow: Nauka, 1982.
  23. Vlokh R and Martynyuk-Lototska I, 2009. Ferroelastic crystals as effective acoustooptic materials. Ukr. J. Phys. Opt. 10: 89–99. doi:10.3116/16091833/10/2/89/2009
  24. Papadakis E, 1967. Ultrasonic phase velocity by the pulse-echo-overlap method incorporating diffraction phase corrections. J. Acoust. Soc. Amer. 42: 1045–1051. doi:10.1121/1.1910688
  25. Ohmachi Y, Uchida N and Niizeki N, 1972. Acoustic wave propagation in TeO2 single crystals. J. Acoust Soc. Amer. 51: 164–168. doi:10.1121/1.1912826
  26. Sirotin Yu I and Shaskolskaya M P, Fundamentals of crystal physics. Moscow: Nauka, 1979.
(c) Ukrainian Journal of Physical Optics