Home
page
Other articles
in this issue |
Acoustic anisotropy
of AgGaGe3Se8 crystals and their acoustooptic applications
Martynyuk-Lototska I., Kushnirevych M., Myronchuk
G. L., Parasyuk O. and Vlokh R.
Download this
article
Abstract. We present the studies of anisotropy of acoustic wave
(AW) propagation in AgGaGe3Se8
crystals. Complete matrices of mechanical stiffness and compliance coefficients
are determined basing on the experimental values of AW velocities. Cross
sections of AW velocity surfaces by the principal crystallographic planes
are obtained. We have found that the velocities of quasi-transverse and
quasi-longitudinal AWs propagating in the AgGaGe3Se8
crystals can be very low, thus facilitating potentially high acoustooptic
figures of merit.
Keywords: acoustooptics, chalcogenide crystals,
acoustic wave velocities, elastic properties
PACS: 42.79.Jq, 43.35.Sx
UDC: 535.012.2+535.42+534.321.9
Ukr. J. Phys. Opt.
16 77-84
doi: 10.3116/16091833/16/2/77/2015
Received: 20.03.2015
Анотація. У роботі представлено
результати досліджень анізотропії поширення
акустичних хвиль у кристалах AgGaGe3Se8.
На основі експериментального вивчення
швидкостей поширення акустичних хвиль
визначено повні матриці коефіцієнтів жорсткості
і податливості цих кристалів. Побудовано
перетини поверхонь швидкостей акустичних
хвиль головними кристалографічними площинами.
Виявлено, що швидкості поширення квазі-поперечних
і квазі-поздовжніх акустичних хвиль сягають
низьких значень, що повинно привести до
великих коефіцієнтів акустооптичної якості
кристалів AgGaGe3Se8. |
|
REFERENCES
-
Gottlieb M and Roland G W, 1980. Infrared acousto-optic materials: applications,
requirements, and crystal development. Opt. Eng. 19: 196901. doi:10.1117/12.7972632
-
Voloshinov V B, Knyazev G A, Kulakova L A and Gupta N, 2013. Acousto-optic
control of light beams in the infrared range. Phys. Wave Phenom. 21: 134–138.
doi:10.3103/S1541308X13020052
-
Nevejans D, Neefs E, Van Ransbeeck E, Berkenbosch S, Clairquin R, De Vos
L, Moelans W, Glorieux S, Baeke A, Korablev O, Vinogradov I, Kalinnikov
Y, Bach B, Dubois J-P and Villard E, 2006. Compact high-resolution spaceborne
echelle grating spectrometer with acousto-optical tunable filter based
order sorting for the infrared domain from 2.2 to 4.3 µm. Appl. Opt. 45:
5191–5206. doi:10.1364/AO.45.005191
-
Zalesskaya G A, Yakovlev D L, Khodin M V, Baranovskii D I, Sambor E G and
Vas'kov O S, 1996. Use of dispersion filters for acoustooptical determination
of gase concentration. J. Appl. Spectr. 63: 271–275. doi:10.1007/BF02606738
-
http://www.mt-berlin.com/frames_ao/acousto_frames.htm
-
Singh N B and Duval W M B, 1991. Growth kinetics of physical vapour transport
processes: Crystal growth of opto-electronic material mercurous chloride.
NASA Techn. Memorandum. 103788.
-
Kaidan M V, Zadorozhna A V, Andrushchak A S and Kityk A V, 2002. Photoelastic
and acoustooptical properties of Cs2HgCl4 crystals. Appl. Opt. 41: 5341–5345.
doi:10.1364/AO.41.005341
-
Kaidan M V, Zadorozhna A V, Andrushchak A S and Kityk A V, 2003. Cs2HgCl4
crystal as a new material for acoustooptical applications. Opt. Mater.
22: 263–268. doi:10.1016/S0925-3467(02)00286-0
-
Gottlieb W, Isaacs T J, Feichtner J D and Roland G W, 1974. Acousto-optic
properties of some chalcogenide crystals. J. Appl. Phys. 45: 5145–5151.
doi:10.1063/1.1663207
-
Mys O, Kostyrko M, Smyk M, Krupych O and Vlokh R, 2014. Anisotropy of acoustooptic
figure of merit in optically isotropic media. Appl. Opt. 53: 4616–4627.
doi:10.1364/AO.53.004616
-
Knuteson D J, Singh N B, Kanner G, Berghmans A, Wagner B, Kahler D, McLaughlin
S, Suhre D and Gottlieb M, 2010. Quaternary AgGaGenSe2(n+1) crystals for
NLO applications. J. Cryst. Growth. 312: 1114–1117. doi:10.1016/j.jcrysgro.2009.10.051
-
Olekseyuk I D, Gorgut G E and Parasyuk O V, 1997. The phase equilibria
in the quasi-ternary Ag2Se-Ga2Se3-GeSe2 system. J. All. Comp. 260: 111–120.
doi:10.1016/S0925-8388(97)00166-7
-
V Badikov, K Mitin, F Noack, V Panyutin, V Petrov, A Seryogin and G Shevyrdyaeva,
2009. Orthorhombic nonlinear crystals of AgxGaxGe1–xSe2 for the mid-infrared
spectral range. Opt. Mat. 31: 590–597. doi:10.1016/j.optmat.2008.06.015
-
Reshak A H, Parasyuk O V, Fedorchuk A O, Kamarudin H, Auluck S and Chyský
J, 2013. Optical spectra and band structure of AgxGaxGe1–xSe2 (x = 0.333,
0.250, 0.200, 0.167) single crystals: Experiment and theory J. Phys. Chem.
B. 117: 15220−15231. doi:10.1021/jp410786w
-
Davidyuk G E, Yurchenko O N, Parasyuk O V, Sachanyuk V P, Pankevich V Z
and Shavarova A P, 2008. Effect of doping with transition and rare-earth
metals on the electrical and optical properties of AgGaGe3Se8 single crystals.
Inorg. Mat. 44: 361–365. doi:10.1134/S0020168508040067
-
Al-Harbi E, Wojciechowski A, AlZayed N, Parasyuk O V, Gondek E, Armaty
P, El-Naggar A M, Kityk I V and Karasinski P, 2013. IR laser induced spectral
kinetics of AgGaGe3Se8:Cu chalcogenide crystals. Spectrochim. Acta A. 111:
142–149. doi:10.1016/j.saa.2013.03.054
-
Parasyuk O V, Fedorchuk A O, Gorgut G P, Khyzhun O Y, Wojciechowski A and
Kityk I V, 2012. Crystal growth, electron structure and photo induced optical
changes in novel AgxGaxGe1–xSe2 (x = 0.333, 0.250, 0.200, 0.167) crystals.
Opt. Mat. 35: 65–73. doi:10.1016/j.optmat.2012.07.002
-
Kityk I V, Fedorchuk A O, Rakus P, Ebothe J, AlZayed N, Alqarni S A N,
El-Naggar A M and Parasyuk O V, 2013. Photoinduced anisotropy in theAgGaGe3Se8:Cu
chalcogenide crystals. Mat. Lett. 107: 218–220. doi:10.1016/j.matlet.2013.06.011
-
Kityk I V, AlZayed N, Rakus P, AlOtaibe A A, El-Naggar A M and Parasyuk
O V, 2013. Laser-induced piezoelectric effects in chalcogenide crystals.
Physica B. 423: 60–63. doi:10.1016/j.physb.2013.04.043
-
Davydyuk G Ye, Myronchuk G L, Lakshminarayana G, Yakymchuk O V, Reshak
A H, Wojciechowski A, Rakus P, AlZayed N, Chmiel M, Kityk I V and Parasyuk
O V, 2012. IR-induced features of AgGaGeS4 crystalline semiconductors.
J. Phys. Chem. Sol. 73: 439–443. doi:10.1016/j.jpcs.2011.11.026
-
Bekenev V L, Bozhko V V, Parasyuk O V, Davydyuk G E, Bulatetska L V, Fedorchuk
A O, Kityk I V and Khyzhun O Y, 2012. Electronic structure of non-centrosymmetric
AgCd2GaS4 and AgCd2GaSe4 single crystals. J. Elect. Spectr. Rel. Phenom.
185: 559–566. doi:10.1016/j.elspec.2012.11.014
-
Shaskolskaya M P, Acoustic crystals. Moscow: Nauka, 1982.
-
Vlokh R and Martynyuk-Lototska I, 2009. Ferroelastic crystals as effective
acoustooptic materials. Ukr. J. Phys. Opt. 10: 89–99. doi:10.3116/16091833/10/2/89/2009
-
Papadakis E, 1967. Ultrasonic phase velocity by the pulse-echo-overlap
method incorporating diffraction phase corrections. J. Acoust. Soc. Amer.
42: 1045–1051. doi:10.1121/1.1910688
-
Ohmachi Y, Uchida N and Niizeki N, 1972. Acoustic wave propagation in TeO2
single crystals. J. Acoust Soc. Amer. 51: 164–168. doi:10.1121/1.1912826
-
Sirotin Yu I and Shaskolskaya M P, Fundamentals of crystal physics. Moscow:
Nauka, 1979.
(c) Ukrainian Journal
of Physical Optics |